全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
PLOS ONE  2012 

ATP Release from Dying Autophagic Cells and Their Phagocytosis Are Crucial for Inflammasome Activation in Macrophages

DOI: 10.1371/journal.pone.0040069

Full-Text   Cite this paper   Add to My Lib

Abstract:

Pathogen-activated and damage-associated molecular patterns activate the inflammasome in macrophages. We report that mouse macrophages release IL-1β while co-incubated with pro-B (Ba/F3) cells dying, as a result of IL-3 withdrawal, by apoptosis with autophagy, but not when they are co-incubated with living, apoptotic, necrotic or necrostatin-1 treated cells. NALP3-deficient macrophages display reduced IL-1β secretion, which is also inhibited in macrophages deficient in caspase-1 or pre-treated with its inhibitor. This finding demonstrates that the inflammasome is activated during phagocytosis of dying autophagic cells. We show that activation of NALP3 depends on phagocytosis of dying cells, ATP release through pannexin-1 channels of dying autophagic cells, P2X7 purinergic receptor activation, and on consequent potassium efflux. Dying autophagic Ba/F3 cells injected intraperitoneally in mice recruit neutrophils and thereby induce acute inflammation. These findings demonstrate that NALP3 performs key upstream functions in inflammasome activation in mouse macrophages engulfing dying autophagic cells, and that these functions lead to pro-inflammatory responses.

References

[1]  Krysko DV, Vanden Berghe T, D'Herde K, Vandenabeele P (2008) Apoptosis and necrosis: Detection, discrimination and phagocytosis. Methods 44: 205–221.
[2]  Vandenabeele P, Galluzzi L, Vanden Berghe T, Kroemer G (2010) Molecular mechanisms of necroptosis: an ordered cellular explosion. Nature Reviews Molecular Cell Biology 11: 700–714.
[3]  Gozuacik D, Bialik S, Raveh T, Mitou G, Shohat G, et al. (2008) DAP-kinase is a mediator of endoplasmic reticulum stress-induced caspase activation and autophagic cell death. Cell Death and Differentiation 15: 1875–1886.
[4]  Bursch W, Ellinger A, Kienzl H, Torok L, Pandey S, et al. (1996) Active cell death induced by the anti-estrogens tamoxifen and ICI 164 384 in human mammary carcinoma cells (MCF-7) in culture: The role of autophagy. Carcinogenesis 17: 1595–1607.
[5]  Krysko DV, Vandenabeele P (2010) Clearance of dead cells: mechanisms, immune responses and implication in the development of diseases. Apoptosis 15: 995–997.
[6]  Krysko O, Vandenabeele P, Krysko DV, Bachert C (2010) Impairment of phagocytosis of apoptotic cells and its role in chronic airway diseases. Apoptosis 15: 1137–1146.
[7]  Cvetanovic M, Mitchell JE, Patel V, Avner BS, Su Y, et al. (2006) Specific recognition of apoptotic cells reveals a ubiquitous and unconventional innate immunity. Journal of Biological Chemistry 281: 20055–20067.
[8]  Fadok VA, Bratton DL, Konowal A, Freed PW, Westcott JY, et al. (1998) Macrophages that have ingested apoptotic cells in vitro inhibit proinflammatory cytokine production through autocrine/paracrine mechanisms involving TGF-beta, PGE2, and PAF. Journal of Clinical Investigation 101: 890–898.
[9]  Franc NC, White K, Ezekowitz RAB (1999) Phagocytosis and development: back to the future. Current Opinion in Immunology 11: 47–52.
[10]  Obeid M, Tesniere A, Ghiringhelli F, Fimia GM, Apetoh L, et al. (2007) Calreticulin exposure dictates the immunogenicity of cancer cell death. Nature Medicine 13: 54–61.
[11]  Krysko DV, Kaczmarek A, Krysko O, Heyndrickx L, Woznicki J, et al. (2011) TLR-2 and TLR-9 are sensors of apoptosis in a mouse model of doxorubicin-induced acute inflammation. Cell Death and Differentiation 18: 1316–1325.
[12]  Matzinger P (1994) Tolerance, danger, and the extended family Annual Review of Immunology 12: 991–1045.
[13]  Grimsley C, Ravichandran KS (2003) Cues for apoptotic cell engulfment: eat-me, don't eat-med and come-get-me signals. Trends in Cell Biology 13: 648–656.
[14]  Garg AD, Nowis D, Golab J, Vandenabeele P, Krysko DV, et al. (2010) Immunogenic cell death, DAMPs and anticancer therapeutics: An emerging amalgamation. Biochimica Et Biophysica Acta-Reviews on Cancer 1805: 53–71.
[15]  Krysko DV, Agostinis P, Krysko O, Garg AD, Bachert C, et al. (2011) Emerging role of damage-associated molecular patterns derived from mitochondria in inflammation. Trends in Immunology 32: 157–164.
[16]  Uhl M, Kepp O, Jusforgues-Saklani H, Vicencio JM, Kroemer G, et al. (2009) Autophagy within the antigen donor cell facilitates efficient antigen cross-priming of virus-specific CD8(+) T cells. Cell Death and Differentiation 16: 991–1005.
[17]  Petrovski G, Ayna G, Majai G, Hodrea J, Benko S, et al. (2011) Phagocytosis of cells dying through autophagy induces inflammasome activation and IL-1 beta release in human macrophages. Autophagy 7: 321–330.
[18]  Fesus L, Demeny MA, Petrovski G (2011) Autophagy Shapes Inflammation. Antioxidants & Redox Signaling 14: 2233–2243.
[19]  Michaud M, Martins I, Sukkurwala AQ, Adjemian S, Ma YT, et al. (2011) Autophagy-Dependent Anticancer Immune Responses Induced by Chemotherapeutic Agents in Mice. Science 334: 1573–1577.
[20]  Ghiringhelli F, Apetoh L, Tesniere A, Aymeric L, Ma YT, et al. (2009) Activation of the NLRP3 inflammasome in dendritic cells induces IL-1 beta-dependent adaptive immunity against tumors. Nature Medicine 15: 1170–U1199.
[21]  Netea MG, Simon A, van de Veerdonk F, Kullberg BJ, Van der Meer JWM, et al. (2010) IL-1 beta Processing in Host Defense: Beyond the Inflammasomes. Plos Pathogens 6.
[22]  Kawai T, Akira S (2007) Signaling to NF-kappaB by Toll-like receptors. Trends Mol Med 13: 460–469.
[23]  Petrilli V, Dostert C, Muruve DA, Tschopp J (2007) The inflammasome: a danger sensing complex triggering innate immunity. Current Opinion in Immunology 19: 615–622.
[24]  Schroder K, Tschopp J (2010) The Inflammasomes. Cell 140: 821–832.
[25]  Perregaux D, Gabel CA (1994) Interleukin-1-beta maturation and release in response to ATP and nigericin- evidence that potassium-depletion mediated by these agents is a necessary and common feature of their activity Journal of Biological Chemistry 269: 15195–15203.
[26]  Petrilli V, Papin S, Dostert C, Mayor A, Martinon F, et al. (2007) Activation of the NALP3 inflammasome is triggered by low intracellular potassium concentration. Cell Death and Differentiation 14: 1583–1589.
[27]  Kahlenberg JM, Dubyak GR (2004) Mechanisms of caspase-1 activation by P2X(7) receptor-mediated K+ release. American Journal of Physiology-Cell Physiology 286: C1100–C1108.
[28]  Ferrari D, Pizzirani C, Adinolfi E, Lemoli RM, Curti A, et al. (2006) The P2X(7) receptor: A key player in IL-1 processing and release. Journal of Immunology 176: 3877–3883.
[29]  Kanneganti TD, Lamkanfi M, Kim YG, Chen G, Park JH, et al. (2007) Pannexin-1-mediated recognition of bacterial molecules activates the cryopyrin inflammasome independent of Toll-like receptor signaling. Immunity 26: 433–443.
[30]  Wirawan E, Vande Walle L, Kersse K, Cornelis S, Claerhout S, et al. (2010) Caspase-mediated cleavage of Beclin-1 inactivates Beclin-1-induced autophagy and enhances apoptosis by promoting the release of proapoptotic factors from mitochondria. Cell Death & Disease 1.
[31]  Klionsky DJ, Abeliovich H, Agostinis P, Agrawal DK, Aliev G, et al. (2008) Guidelines for the use and interpretation of assays for monitoring autophagy in higher eukaryotes. Autophagy 4: 151–175.
[32]  Mizushima N, Yoshimori T (2007) How to interpret LC3 immunoblotting. Autophagy 3: 542–545.
[33]  Elliott JA, Winn WC (1986) Treatment of alveolar macrophages with cytochalasin-D inhibits uptake and subsequent growth of legiobella-pneumophila. Infection and Immunity 51: 31–36.
[34]  Petrilli V, Papin S, Dostert C, Mayor A, Martinon F, et al. (2007) Regulation of the NALP3 inflammasome activity by potassium. Swiss Medical Weekly 137: 28S–28S.
[35]  Piccini A, Carta S, Tassi S, Lasiglie D, Fossati G, et al. (2008) ATP is released by monocytes stimulated with pathogen-sensing receptor ligands and induces IL-1 beta and IL-18 secretion in an autocrine way. Proceedings of the National Academy of Sciences of the United States of America 105: 8067–8072.
[36]  Pelegrin P, Surprenant A (2006) Pannexin-1 mediates large pore formation and interleukin-1 beta release by the ATP-gated P2X(7) receptor. Embo Journal 25: 5071–5082.
[37]  Prietzsch H, Brock J, Kleine HD, Liebe S, Jaster R (2002) Interferon-alpha inhibits cell cycle progression by Ba/F3 cells through the antagonisation of interleukin-3 effects on key regulators of G(1)/S transition. Cellular Signalling 14: 751–759.
[38]  Altman BJ, Wofford JA, Zhao YX, Coloff JL, Ferguson EC, et al. (2009) Autophagy Provides Nutrients but Can Lead to Chop-dependent Induction of Bim to Sensitize Growth Factor-deprived Cells to Apoptosis. Molecular Biology of the Cell 20: 1180–1191.
[39]  Majai G, Petrovski G, Fesus L (2006) Inflammation and the apopto-phagocytic system. Immunology Letters 104: 94–101.
[40]  Petrovski G, Zahuczky G, Katona K, Vereb G, Martinet W, et al. (2007) Clearance of dying autophagic cells of different origin by professional and non-professional phagocytes. Cell Death and Differentiation 14: 1117–1128.
[41]  Zitvogel L, Kepp O, Senovilla L, Menger L, Chaput N, et al. (2010) Immunogenic Tumor Cell Death for Optimal Anticancer Therapy: The Calreticulin Exposure Pathway. Clinical Cancer Research 16: 3100–3104.
[42]  Geng Y, Kohli L, Klocke BJ, Roth KA (2010) Chloroquine-induced autophagic vacuole accumulation and cell death in glioma cells is p53 independent. Neuro-Oncology 12: 473–481.
[43]  Chu CT (2006) Autophagic stress in neuronal injury and disease. J Neuropathol Exp Neurol 65: 423–432.
[44]  Strowig T, Henao-Mejia J, Elinav E, Flavell R (2012) Inflammasomes in health and disease. Nature 481: 278–286.
[45]  Broz P, Newton K, Lamkanfi M, Mariathasan S, Dixit VM, et al. (2010) Redundant roles for inflammasome receptors NLRP3 and NLRC4 in host defense against Salmonella. Journal of Experimental Medicine 207: 1745–1755.
[46]  Stienstra R, Joosten LAB, Koenen T, van Tits B, van Diepen JA, et al. (2010) The Inflammasome-Mediated Caspase-1 Activation Controls Adipocyte Differentiation and Insulin Sensitivity. Cell Metabolism 12: 593–605.
[47]  Kersse K, Bertrand MJM, Lamkanfi M, Vandenabeele P (2011) NOD-like receptors and the innate immune system: Coping with danger, damage and death. Cytokine & Growth Factor Reviews 22: 257–276.
[48]  Martinon F, Agostini L, Meylan E, Tschopp J (2004) Identification of bacterial muramyl dipeptide as activator of the NALP3/cryopyrin inflammasome. Current Biology 14: 1929–1934.
[49]  Tschopp J, Schroder K (2010) NLRP3 inflammasome activation: the convergence of multiple signalling pathways on ROS production? Nature Reviews Immunology 10: 210–215.
[50]  McDonald B (2010) Intravascular danger signals guide neutrophils to sites of sterile inflammation (October, pg 362, 2010). Science 331: 1517–1517.
[51]  Chekeni FB, Elliott MR, Sandilos JK, Walk SF, Kinchen JM, et al. (2010) Pannexin 1 channels mediate 'find-me' signal release and membrane permeability during apoptosis. Nature 467: 863–U136.
[52]  Pelegrin P, Barroso-Gutierrez C, Surprenant A (2008) P2X(7) receptor differentially couples to distinct release pathways for IL-1 beta in mouse macrophage. Journal of Immunology 180: 7147–7157.
[53]  Silverman WR, Vaccari J, Locovei S, Qiu F, Carlsson SK, et al. (2009) The Pannexin 1 Channel Activates the Inflammasome in Neurons and Astrocytes. Journal of Biological Chemistry 284: 18143–18151.
[54]  Qu Y, Misaghi S, Newton K, Gilmour LL, Louie S, et al. (2011) Pannexin-1 Is Required for ATP Release during Apoptosis but Not for Inflammasome Activation. Journal of Immunology 186: 6553–6561.
[55]  D'Hondt C, Ponsaerts R, De Smedt H, Vinken M, De Vuyst E, et al. (2011) Pannexin channels in ATP release and beyond: An unexpected rendezvous at the endoplasmic reticulum. Cellular Signalling 23: 305–316.
[56]  Garg AD, Krysko DV, Verfaillie T, Kaczmarek A, Ferreira GB, et al. (2012) A novel pathway combining calreticulin exposure and ATP secretion in immunogenic cancer cell death. EMBO J 31: 1062–1079.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133