Previous PET and MRI studies have indicated that the degree to which pathology translates into clinical symptoms is strongly dependent on sex with women more likely to express pathology as a diagnosis of AD, whereas men are more resistant to clinical symptoms in the face of the same degree of pathology. Here we use DTI to investigate the difference between male and female white matter tracts in healthy older participants (24 women, 16 men) and participants with mild cognitive impairment (21 women, 12 men). Differences between control and MCI participants were found in fractional anisotropy (FA), radial diffusion (DR), axial diffusion (DA) and mean diffusion (MD). A significant main effect of sex was also reported for FA, MD and DR indices, with male control and male MCI participants having significantly more microstructural damage than their female counterparts. There was no sex by diagnosis interaction. Male MCIs also had significantly less normalised grey matter (GM) volume than female MCIs. However, in terms of absolute brain volume, male controls had significantly more brain volume than female controls. Normalised GM and WM volumes were found to decrease significantly with age with no age by sex interaction. Overall, these data suggest that the same degree of cognitive impairment is associated with greater structural damage in men compared with women.
References
[1]
Perneczky R, Diehl-Schmid J, F?rstl H, Drzezga A, Kurz A (2007) Male gender is associated with greater cerebral hypometabolism in frontotemporal dementia: evidence for sex-related cognitive reserve. Int J Geriatr Psychiatry 22: 1135–1140. doi:10.1002/gps.1803.
[2]
Perneczky R, Wagenpfeil S, Lunetta KL, Cupples LA, Green RC, et al. (2009) Education attenuates the effect of medial temporal lobe atrophy on cognitive function in Alzheimer’s disease: the MIRAGE study. J. Alzheimers Dis 17: 855–862. doi:10.3233/JAD-2009–1117.
[3]
Barnes LL, Wilson RS, Bienias JL, Schneider JA, Evans DA, et al. (2005) Sex differences in the clinical manifestations of Alzheimer disease pathology. Arch. Gen. Psychiatry 62: 685–691. doi:10.1001/archpsyc.62.6.685.
[4]
Katzman R (1993) Education and the prevalence of dementia and Alzheimer’s disease. Neurology 43: 13–20.
[5]
Allen JS, Damasio H, Grabowski TJ (2002) Normal neuroanatomical variation in the human brain: an MRI-volumetric study. Am. J. Phys. Anthropol 118: 341–358. doi:10.1002/ajpa.10092.
[6]
Cosgrove KP, Mazure CM, Staley JK (2007) Evolving knowledge of sex differences in brain structure, function, and chemistry. Biol. Psychiatry 62: 847–855. doi:10.1016/j.biopsych.2007.03.001.
[7]
Rabinowicz T, Dean DE, Petetot JM, de Courten-Myers GM (1999) Gender differences in the human cerebral cortex: more neurons in males; more processes in females. J. Child Neurol 14: 98–107.
[8]
Rabinowicz T, Petetot JM-C, Gartside PS, Sheyn D, Sheyn T, et al. (2002) Structure of the cerebral cortex in men and women. J. Neuropathol. Exp. Neurol 61: 46–57.
[9]
Beinhoff U, Tumani H, Brettschneider J, Bittner D, Riepe MW (2008) Gender-specificities in Alzheimer’s disease and mild cognitive impairment. J. Neurol 255: 117–122. doi:10.1007/s00415–008–0726–9.
[10]
Graves AB, Mortimer JA, Larson EB, Wenzlow A, Bowen JD, et al. (1996) Head circumference as a measure of cognitive reserve. Association with severity of impairment in Alzheimer’s disease. Br J Psychiatry 169: 86–92.
[11]
Perneczky R, Drzezga A, Diehl-Schmid J, Li Y, Kurz A (2007) Gender differences in brain reserve: an (18)F-FDG PET study in Alzheimer’s disease. J. Neurol 254: 1395–1400. doi:10.1007/s00415–007–0558-z.
[12]
Piras F, Cherubini A, Caltagirone C, Spalletta G (2010) Education mediates microstructural changes in bilateral hippocampus. Hum Brain Mapp. Accessed 2010 May 22.
[13]
Stern Y, Habeck C, Moeller J, Scarmeas N, Anderson KE, et al. (2005) Brain networks associated with cognitive reserve in healthy young and old adults. Cereb. Cortex 15: 394–402. doi:10.1093/cercor/bhh142.
Petersen RC (2004) Mild cognitive impairment as a diagnostic entity. J. Intern. Med 256: 183–194. doi:10.1111/j.1365–2796.2004.01388.x.
[16]
Bartzokis G (2009) Alzheimer’s disease as homeostatic responses to age-related myelin breakdown. Neurobiol. Aging. Accessed 2010 Apr 26.
[17]
Bosch B, Arenaza-Urquijo EM, Rami L, Sala-Llonch R, Junqué C, et al. (2010) Multiple DTI index analysis in normal aging, amnestic MCI and AD. Relationship with neuropsychological performance. Neurobiol Aging. Accessed 9 Nov 2010.
[18]
O’Dwyer L, Lamberton F, Bokde ALW, Ewers M, Faluyi YO, et al. (2011) Multiple Indices of Diffusion Identifies White Matter Damage in Mild Cognitive Impairment and Alzheimer’s Disease. PLoS ONE 6: e21745. doi:10.1371/journal.pone.0021745.
[19]
O’Dwyer L, Lamberton F, Bokde ALW, Ewers M, Faluyi YO, et al. (2011) Using Diffusion Tensor Imaging and Mixed-Effects Models to Investigate Primary and Secondary White Matter Degeneration in Alzheimer’s Disease and Mild Cognitive Impairment. J Alzheimers Dis. Accessed 2011 Jun 25.
[20]
Zhuang L, Wen W, Zhu W, Trollor J, Kochan N, et al. (2010) White matter integrity in mild cognitive impairment: a tract-based spatial statistics study. Neuroimage 53: 16–25. doi:10.1016/j.neuroimage.2010.05.068.
[21]
Englund E, Brun A (1990) White matter changes in dementia of Alzheimer’s type: the difference in vulnerability between cell compartments. Histopathology 16: 433–439.
[22]
Englund E (1998) Neuropathology of white matter changes in Alzheimer’s disease and vascular dementia. Dement Geriatr Cogn Disord 9: 6–12.
[23]
Stricker NH, Schweinsburg BC, Delano-Wood L, Wierenga CE, Bangen KJ, et al. (2009) Decreased white matter integrity in late-myelinating fiber pathways in Alzheimer’s disease supports retrogenesis. Neuroimage 45: 10–16. doi:10.1016/j.neuroimage.2008.11.027.
[24]
Acosta-Cabronero J, Williams GB, Pengas G, Nestor PJ (2010) Absolute diffusivities define the landscape of white matter degeneration in Alzheimer’s disease. Brain 133: 529–539. doi:10.1093/brain/awp257.
[25]
Salat DH, Tuch DS, van der Kouwe AJW, Greve DN, Pappu V, et al. (2010) White matter pathology isolates the hippocampal formation in Alzheimer’s disease. Neurobiol. Aging 31: 244–256. doi:10.1016/j.neurobiolaging.2008.03.013.
[26]
Tanabe JL, Amend D, Schuff N, DiSclafani V, Ezekiel F, et al. (1997) Tissue segmentation of the brain in Alzheimer disease. AJNR Am J Neuroradiol 18: 115–123.
[27]
Jernigan TL, Salmon DP, Butters N, Hesselink JR (1991) Cerebral structure on MRI, Part II: Specific changes in Alzheimer’s and Huntington’s diseases. Biol. Psychiatry 29: 68–81.
[28]
Le Bihan D (2003) Looking into the functional architecture of the brain with diffusion MRI. Nat. Rev. Neurosci 4: 469–480. doi:10.1038/nrn1119.
[29]
Pierpaoli C, Jezzard P, Basser PJ, Barnett A, Di Chiro G (1996) Diffusion tensor MR imaging of the human brain. Radiology 201: 637–648.
[30]
Teipel SJ, Stahl R, Dietrich O, Schoenberg SO, Perneczky R, et al. (2007) Multivariate network analysis of fiber tract integrity in Alzheimer’s disease. Neuroimage 34: 985–995. doi:10.1016/j.neuroimage.2006.07.047.
[31]
Jalbert JJ, Daiello LA, Lapane KL (2008) Dementia of the Alzheimer type. Epidemiol Rev 30: 15–34. doi:10.1093/epirev/mxn008.
[32]
M?ls? PK, Marttila RJ, Rinne UK (1982) Epidemiology of dementia in a Finnish population. Acta Neurol. Scand 65: 541–552.
[33]
Jorm AF, Korten AE, Henderson AS (1987) The prevalence of dementia: a quantitative integration of the literature. Acta Psychiatr Scand 76: 465–479.
[34]
Andersen K, Launer LJ, Dewey ME, Letenneur L, Ott A, et al. (1999) Gender differences in the incidence of AD and vascular dementia: The EURODEM Studies. EURODEM Incidence Research Group. Neurology 53: 1992–1997.
[35]
Fratiglioni L, Viitanen M, von Strauss E, Tontodonati V, Herlitz A, et al. (1997) Very old women at highest risk of dementia and Alzheimer’s disease: incidence data from the Kungsholmen Project, Stockholm. Neurology 48: 132–138.
[36]
Westerhausen R, Kreuder F, Dos Santos Sequeira S, Walter C, Woerner W, et al. (2004) Effects of handedness and gender on macro- and microstructure of the corpus callosum and its subregions: a combined high-resolution and diffusion-tensor MRI study. Brain Res Cogn Brain Res 21: 418–426. doi:10.1016/j.cogbrainres.2004.07.002.
[37]
Liu F, Vidarsson L, Winter JD, Tran H, Kassner A (2010) Sex differences in the human corpus callosum microstructure: a combined T2 myelin-water and diffusion tensor magnetic resonance imaging study. Brain Res 1343: 37–45. doi:10.1016/j.brainres.2010.04.064.
[38]
Shin Y-W, Kim DJ, Ha TH, Park H-J, Moon W-J, et al. (2005) Sex differences in the human corpus callosum: diffusion tensor imaging study. Neuroreport 16: 795–798.
[39]
Huster RJ, Westerhausen R, Kreuder F, Schweiger E, Wittling W (2009) Hemispheric and gender related differences in the midcingulum bundle: a DTI study. Hum Brain Mapp 30: 383–391. doi:10.1002/hbm.20509.
[40]
Rametti G, Carrillo B, Gómez-Gil E, Junque C, Segovia S, et al. (2011) White matter microstructure in female to male transsexuals before cross-sex hormonal treatment. A diffusion tensor imaging study. J Psychiatr Res 45: 199–204. doi:10.1016/j.jpsychires.2010.05.006.
[41]
Chou K-H, Cheng Y, Chen I-Y, Lin C-P, Chu W-C (2011) Sex-linked white matter microstructure of the social and analytic brain. Neuroimage 54: 725–733. doi:10.1016/j.neuroimage.2010.07.010.
[42]
Murphy DG, DeCarli C, McIntosh AR, Daly E, Mentis MJ, et al. (1996) Sex differences in human brain morphometry and metabolism: an in vivo quantitative magnetic resonance imaging and positron emission tomography study on the effect of aging. Arch. Gen. Psychiatry 53: 585–594.
[43]
Petersen RC, Doody R, Kurz A, Mohs RC, Morris JC, et al. (2001) Current concepts in mild cognitive impairment. Arch. Neurol 58: 1985–1992.
[44]
Folstein MF, Folstein SE, McHugh PR (1975) ‘Mini-mental state’. A practical method for grading the cognitive state of patients for the clinician. J Psychiatr Res 12: 189–198.
[45]
Mirra SS, Heyman A, McKeel D, Sumi SM, Crain BJ, et al. (1991) The Consortium to Establish a Registry for Alzheimer’s Disease (CERAD). Part II. Standardization of the neuropathologic assessment of Alzheimer’s disease. Neurology 41: 479–486.
[46]
R Development Core Team (2010) R: A Language and Environment for Statistical Computing. Vienna, Austria: R Foundation for Statistical Computing. Available: http://www.R-project.org.
[47]
Pruessmann KP, Weiger M, Scheidegger MB, Boesiger P (1999) SENSE: sensitivity encoding for fast MRI. Magn Reson Med 42: 952–962.
[48]
Fazekas F, Chawluk JB, Alavi A, Hurtig HI, Zimmerman RA (1987) MR signal abnormalities at 1.5 T in Alzheimer’s dementia and normal aging. AJR Am J Roentgenol 149: 351–356.
[49]
Smith SM (2002) Fast robust automated brain extraction. Hum Brain Mapp 17: 143–155. doi:10.1002/hbm.10062.
[50]
Smith SM, De Stefano N, Jenkinson M, Matthews PM (2001) Normalized accurate measurement of longitudinal brain change. J Comput Assist Tomogr 25: 466–475.
[51]
Smith SM, Zhang Y, Jenkinson M, Chen J, Matthews PM, et al. (2002) Accurate, robust, and automated longitudinal and cross-sectional brain change analysis. Neuroimage 17: 479–489.
[52]
Jenkinson M, Smith S (2001) A global optimisation method for robust affine registration of brain images. Med Image Anal 5: 143–156.
[53]
Jenkinson M, Bannister P, Brady M, Smith S (2002) Improved optimization for the robust and accurate linear registration and motion correction of brain images. Neuroimage 17: 825–841.
[54]
Zhang Y, Brady M, Smith S (2001) Segmentation of brain MR images through a hidden Markov random field model and the expectation-maximization algorithm. IEEE Trans Med Imaging 20: 45–57. doi:10.1109/42.906424.
[55]
Smith SM, Jenkinson M, Johansen-Berg H, Rueckert D, Nichols TE, et al. (2006) Tract-based spatial statistics: voxelwise analysis of multi-subject diffusion data. Neuroimage 31: 1487–1505. doi:10.1016/j.neuroimage.2006.02.024.
[56]
Nichols TE, Holmes AP (2002) Nonparametric permutation tests for functional neuroimaging: a primer with examples. Hum Brain Mapp 15: 1–25.
[57]
Liu Y, Spulber G, Lehtim?ki KK, K?n?nen M, Hallikainen I, et al. (2009) Diffusion tensor imaging and Tract-Based Spatial Statistics in Alzheimer’s disease and mild cognitive impairment. Neurobiol. Aging. Accessed 2010 Jun 17.
[58]
Pievani M, Agosta F, Pagani E, Canu E, Sala S, et al. (2010) Assessment of white matter tract damage in mild cognitive impairment and Alzheimer’s disease. Hum Brain Mapp. Accessed 2010 May 29.
[59]
Hsu J-L, Leemans A, Bai C-H, Lee C-H, Tsai Y-F, et al. (2008) Gender differences and age-related white matter changes of the human brain: a diffusion tensor imaging study. Neuroimage 39: 566–577. doi:10.1016/j.neuroimage.2007.09.017.
[60]
Wu Y-C, Field AS, Whalen PJ, Alexander AL (2011) Age- and gender-related changes in the normal human brain using hybrid diffusion imaging (HYDI). Neuroimage 54: 1840–1853. doi:10.1016/j.neuroimage.2010.09.067.
[61]
Raz N, Gunning FM, Head D, Dupuis JH, McQuain J, et al. (1997) Selective aging of the human cerebral cortex observed in vivo: differential vulnerability of the prefrontal gray matter. Cereb. Cortex 7: 268–282.
[62]
Sullivan EV, Adalsteinsson E, Hedehus M, Ju C, Moseley M, et al. (2001) Equivalent disruption of regional white matter microstructure in ageing healthy men and women. Neuroreport 12: 99–104.
[63]
Szeszko PR, Vogel J, Ashtari M, Malhotra AK, Bates J, et al. (2003) Sex differences in frontal lobe white matter microstructure: a DTI study. Neuroreport 14: 2469–2473. doi:10.1097/01.wnr.0000099475.09597.23.
[64]
Oh JS, Song IC, Lee JS, Kang H, Park KS, et al. (2007) Tractography-guided statistics (TGIS) in diffusion tensor imaging for the detection of gender difference of fiber integrity in the midsagittal and parasagittal corpora callosa. NeuroImage 36: 606–616. doi:10.1016/j.neuroimage.2007.03.020.
[65]
Kawachi T, Ishii K, Sakamoto S, Matsui M, Mori T, et al. (2002) Gender differences in cerebral glucose metabolism: a PET study. Journal of the Neurological Sciences 199: 79–83.
[66]
Murphy DGM, DeCarli C, Mclntosh AR, Daly E, Mentis MJ, et al. (1996) Sex Differences in Human Brain Morphometry and Metabolism: An In Vivo Quantitative Magnetic Resonance Imaging and Positron Emission Tomography Study on the Effect of Aging. Arch Gen Psychiatry 53: 585–594. doi:10.1001/archpsyc.1996.01830070031007.
[67]
Davis SW, Kragel JE, Madden DJ, Cabeza R (2012) The architecture of cross-hemispheric communication in the aging brain: linking behavior to functional and structural connectivity. Cereb. Cortex 22: 232–242. doi:10.1093/cercor/bhr123.
[68]
Cabeza R (2002) Hemispheric asymmetry reduction in older adults: the HAROLD model. Psychol Aging 17: 85–100.
[69]
Dennis NA, Kim H, Cabeza R (2007) Effects of aging on true and false memory formation: an fMRI study. Neuropsychologia 45: 3157–3166. doi:10.1016/j.neuropsychologia.2007.07.003.
[70]
Morcom AM, Good CD, Frackowiak RSJ, Rugg MD (2003) Age effects on the neural correlates of successful memory encoding. Brain 126: 213–229.
[71]
Reuter-Lorenz PA, Jonides J, Smith EE, Hartley A, Miller A, et al. (2000) Age differences in the frontal lateralization of verbal and spatial working memory revealed by PET. J Cogn Neurosci 12: 174–187.
[72]
Fan Y, Rao H, Hurt H, Giannetta J, Korczykowski M, et al. (2007) Multivariate examination of brain abnormality using both structural and functional MRI. Neuroimage 36: 1189–1199. doi:10.1016/j.neuroimage.2007.04.009.
[73]
Wang Z, Yan C, Zhao C, Qi Z, Zhou W, et al. (2010) Spatial patterns of intrinsic brain activity in mild cognitive impairment and alzheimer’s disease: A resting-state functional MRI study. Hum Brain Mapp. Accessed 2011 Feb 21.
[74]
Austad SN (2006) Why women live longer than men: sex differences in longevity. Gend Med 3: 79–92.
[75]
Song S-K, Sun S-W, Ramsbottom MJ, Chang C, Russell J, et al. (2002) Dysmyelination revealed through MRI as increased radial (but unchanged axial) diffusion of water. Neuroimage 17: 1429–1436.
[76]
Song S-K, Sun S-W, Ju W-K, Lin S-J, Cross AH, et al. (2003) Diffusion tensor imaging detects and differentiates axon and myelin degeneration in mouse optic nerve after retinal ischemia. Neuroimage 20: 1714–1722.
[77]
Concha L, Gross DW, Wheatley BM, Beaulieu C (2006) Diffusion tensor imaging of time-dependent axonal and myelin degradation after corpus callosotomy in epilepsy patients. Neuroimage 32: 1090–1099. doi:10.1016/j.neuroimage.2006.04.187.
[78]
Agosta F, Pievani M, Sala S, Geroldi C, Galluzzi S, et al. (2010) White Matter Damage in Alzheimer Disease and Its Relationship to Gray Matter Atrophy. Radiology. Accessed 2011 Jan 26.
[79]
Thomalla G, Glauche V, Weiller C, R?ther J (2005) Time course of wallerian degeneration after ischaemic stroke revealed by diffusion tensor imaging. J. Neurol. Neurosurg. Psychiatr 76: 266–268. doi:10.1136/jnnp.2004.046375.
[80]
Thomas B, Eyssen M, Peeters R, Molenaers G, Van Hecke P, et al. (2005) Quantitative diffusion tensor imaging in cerebral palsy due to periventricular white matter injury. Brain 128: 2562–2577. doi:10.1093/brain/awh600.
[81]
Douaud G, Jbabdi S, Behrens TEJ, Menke RA, Gass A, et al. (n.d.) DTI measures in crossing-fibre areas: Increased diffusion anisotropy reveals early white matter alteration in MCI and mild Alzheimer’s disease. NeuroImage In Press, Corrected Proof. Accessed 2011 Feb 18.
[82]
Gao S, Hendrie HC, Hall KS, Hui S (1998) The relationships between age, sex, and the incidence of dementia and Alzheimer disease: a meta-analysis. Arch. Gen. Psychiatry 55: 809–815.
[83]
Aronson MK, Ooi WL, Geva DL, Masur D, Blau A, et al. (1991) Dementia. Age-dependent incidence, prevalence, and mortality in the old old. Arch. Intern. Med 151: 989–992.
[84]
Paykel ES, Brayne C, Huppert FA, Gill C, Barkley C, et al. (1994) Incidence of dementia in a population older than 75 years in the United Kingdom. Arch. Gen. Psychiatry 51: 325–332.
[85]
Brayne C, Gill C, Huppert FA, Barkley C, Gehlhaar E, et al. (1995) Incidence of clinically diagnosed subtypes of dementia in an elderly population. Cambridge Project for Later Life. Br J Psychiatry 167: 255–262.
[86]
Turgeon JL, Carr MC, Maki PM, Mendelsohn ME, Wise PM (2006) Complex actions of sex steroids in adipose tissue, the cardiovascular system, and brain: Insights from basic science and clinical studies. Endocr. Rev 27: 575–605. doi:10.1210/er.2005–0020.
[87]
Lloret A, Badía M-C, Mora NJ, Ortega A, Pallardó FV, et al. (2008) Gender and age-dependent differences in the mitochondrial apoptogenic pathway in Alzheimer’s disease. Free Radic. Biol. Med 44: 2019–2025. doi:10.1016/j.freeradbiomed.2008.02.017.
[88]
Stern Y (2002) What is cognitive reserve? Theory and research application of the reserve concept. J Int Neuropsychol Soc 8: 448–460.
[89]
Stern Y (2009) Cognitive reserve. Neuropsychologia 47: 2015–2028. doi:10.1016/j.neuropsychologia.2009.03.004.
[90]
Richards M, Sacker A (2003) Lifetime antecedents of cognitive reserve. J Clin Exp Neuropsychol 25: 614–624. doi:10.1076/jcen.25.5.614.14581.
[91]
Bennett IJ, Madden DJ, Vaidya CJ, Howard DV, Howard JH Jr (2010) Age-related differences in multiple measures of white matter integrity: A diffusion tensor imaging study of healthy aging. Hum Brain Mapp 31: 378–390. doi:10.1002/hbm.20872.
[92]
Burzynska AZ, Preuschhof C, B?ckman L, Nyberg L, Li S-C, et al. (2010) Age-related differences in white matter microstructure: region-specific patterns of diffusivity. Neuroimage 49: 2104–2112. doi:10.1016/j.neuroimage.2009.09.041.
[93]
Sowell ER, Thompson PM, Toga AW (2004) Mapping changes in the human cortex throughout the span of life. Neuroscientist 10: 372–392. doi:10.1177/1073858404263960.
[94]
Lema?tre H, Crivello F, Grassiot B, Alpérovitch A, Tzourio C, et al. (2005) Age- and sex-related effects on the neuroanatomy of healthy elderly. Neuroimage 26: 900–911. doi:10.1016/j.neuroimage.2005.02.042.
[95]
Good CD, Johnsrude IS, Ashburner J, Henson RN, Friston KJ, et al. (2001) A voxel-based morphometric study of ageing in 465 normal adult human brains. Neuroimage 14: 21–36. doi:10.1006/nimg.2001.0786.
[96]
Shan ZY, Liu JZ, Sahgal V, Wang B, Yue GH (2005) Selective atrophy of left hemisphere and frontal lobe of the brain in old men. J. Gerontol. A Biol. Sci. Med. Sci 60: 165–174.
[97]
Courchesne E, Chisum HJ, Townsend J, Cowles A, Covington J, et al. (2000) Normal Brain Development and Aging: Quantitative Analysis at in Vivo MR Imaging in Healthy Volunteers1. Radiology 216: 672–682.
[98]
Bartzokis G, Sultzer D, Lu PH, Nuechterlein KH, Mintz J, et al. (2004) Heterogeneous age-related breakdown of white matter structural integrity: implications for cortical ‘disconnection’ in aging and Alzheimer’s disease. Neurobiol. Aging 25: 843–851. doi:10.1016/j.neurobiolaging.2003.09.005.
[99]
Raz N, Lindenberger U, Rodrigue KM, Kennedy KM, Head D, et al. (2005) Regional Brain Changes in Aging Healthy Adults: General Trends, Individual Differences and Modifiers. Cerebral Cortex 15: 1676–1689. doi:10.1093/cercor/bhi044.
[100]
Wahlund LO, Almkvist O, Basun H, Julin P (1996) MRI in successful aging, a 5-year follow-up study from the eighth to ninth decade of life. Magn Reson Imaging 14: 601–608.
[101]
Raz N, Gunning-Dixon F, Head D, Rodrigue KM, Williamson A, et al. (2004) Aging, sexual dimorphism, and hemispheric asymmetry of the cerebral cortex: replicability of regional differences in volume. Neurobiol. Aging 25: 377–396. doi:10.1016/S0197–4580(03)00118–0.