Mutations in the ATP13A2 gene (PARK9) cause autosomal recessive, juvenile-onset Kufor-Rakeb syndrome (KRS), a neurodegenerative disease characterized by parkinsonism. KRS mutations produce truncated forms of ATP13A2 with impaired protein stability resulting in a loss-of-function. Recently, homozygous and heterozygous missense mutations in ATP13A2 have been identified in subjects with early-onset parkinsonism. The mechanism(s) by which missense mutations potentially cause parkinsonism are not understood at present. Here, we demonstrate that homozygous F182L, G504R and G877R missense mutations commonly impair the protein stability of ATP13A2 leading to its enhanced degradation by the proteasome. ATP13A2 normally localizes to endosomal and lysosomal membranes in neurons and the F182L and G504R mutations disrupt this vesicular localization and promote the mislocalization of ATP13A2 to the endoplasmic reticulum. Heterozygous T12M, G533R and A746T mutations do not obviously alter protein stability or subcellular localization but instead impair the ATPase activity of microsomal ATP13A2 whereas homozygous missense mutations disrupt the microsomal localization of ATP13A2. The overexpression of ATP13A2 missense mutants in SH-SY5Y neural cells does not compromise cellular viability suggesting that these mutant proteins lack intrinsic toxicity. However, the overexpression of wild-type ATP13A2 may impair neuronal integrity as it causes a trend of reduced neurite outgrowth of primary cortical neurons, whereas the majority of disease-associated missense mutations lack this ability. Finally, ATP13A2 overexpression sensitizes cortical neurons to neurite shortening induced by exposure to cadmium or nickel ions, supporting a functional interaction between ATP13A2 and heavy metals in post-mitotic neurons, whereas missense mutations influence this sensitizing effect. Collectively, our study provides support for common loss-of-function effects of homozygous and heterozygous missense mutations in ATP13A2 associated with early-onset forms of parkinsonism.
References
[1]
Gasser T (2009) Mendelian forms of Parkinson's disease. Biochim Biophys Acta 1792: 587–596.
[2]
Hardy J, Cai H, Cookson MR, Gwinn-Hardy K, Singleton A (2006) Genetics of Parkinson's disease and parkinsonism. Ann Neurol 60: 389–398.
[3]
Moore DJ, West AB, Dawson VL, Dawson TM (2005) Molecular pathophysiology of Parkinson's disease. Annu Rev Neurosci 28: 57–87.
[4]
Najim al-Din AS, Wriekat A, Mubaidin A, Dasouki M, Hiari M (1994) Pallido-pyramidal degeneration, supranuclear upgaze paresis and dementia: Kufor-Rakeb syndrome. Acta Neurol Scand 89: 347–352.
[5]
Ramirez A, Heimbach A, Grundemann J, Stiller B, Hampshire D, et al. (2006) Hereditary parkinsonism with dementia is caused by mutations in ATP13A2, encoding a lysosomal type 5 P-type ATPase. Nat Genet 38: 1184–1191.
[6]
Williams DR, Hadeed A, al-Din AS, Wreikat AL, Lees AJ (2005) Kufor Rakeb disease: autosomal recessive, levodopa-responsive parkinsonism with pyramidal degeneration, supranuclear gaze palsy, and dementia. Mov Disord 20: 1264–1271.
[7]
Behrens MI, Bruggemann N, Chana P, Venegas P, Kagi M, et al. (2010) Clinical spectrum of Kufor-Rakeb syndrome in the Chilean kindred with ATP13A2 mutations. Mov Disord 25: 1929–1937.
[8]
Crosiers D, Ceulemans B, Meeus B, Nuytemans K, Pals P, et al. (2011) Juvenile dystonia-parkinsonism and dementia caused by a novel ATP13A2 frameshift mutation. Parkinsonism Relat Disord 17: 135–138.
[9]
Santoro L, Breedveld GJ, Manganelli F, Iodice R, Pisciotta C, et al. (2011) Novel ATP13A2 (PARK9) homozygous mutation in a family with marked phenotype variability. Neurogenetics 12: 33–39.
[10]
Di Fonzo A, Chien HF, Socal M, Giraudo S, Tassorelli C, et al. (2007) ATP13A2 missense mutations in juvenile parkinsonism and young onset Parkinson disease. Neurology 68: 1557–1562.
[11]
Park JS, Mehta P, Cooper AA, Veivers D, Heimbach A, et al. (2011) Pathogenic effects of novel mutations in the P-type ATPase ATP13A2 (PARK9) causing Kufor-Rakeb syndrome, a form of early-onset parkinsonism. Hum Mutat 32: 956–964.
[12]
Schneider SA, Paisan-Ruiz C, Quinn NP, Lees AJ, Houlden H, et al. (2010) ATP13A2 mutations (PARK9) cause neurodegeneration with brain iron accumulation. Mov Disord 25: 979–984.
[13]
Ugolino J, Fang S, Kubisch C, Monteiro MJ (2011) Mutant Atp13a2 proteins involved in parkinsonism are degraded by ER-associated degradation and sensitize cells to ER-stress induced cell death. Hum Mol Genet 20: 3565–3577.
[14]
Ning YP, Kanai K, Tomiyama H, Li Y, Funayama M, et al. (2008) PARK9-linked parkinsonism in eastern Asia: mutation detection in ATP13A2 and clinical phenotype. Neurology 70: 1491–1493.
[15]
Lin CH, Tan EK, Chen ML, Tan LC, Lim HQ, et al. (2008) Novel ATP13A2 variant associated with Parkinson disease in Taiwan and Singapore. Neurology 71: 1727–1732.
[16]
Schultheis PJ, Hagen TT, O'Toole KK, Tachibana A, Burke CR, et al. (2004) Characterization of the P5 subfamily of P-type transport ATPases in mice. Biochem Biophys Res Commun 323: 731–738.
[17]
Ramonet D, Podhajska A, Stafa K, Sonnay S, Trancikova A, et al. (2012) PARK9-Associated ATP13A2 Localizes to Intracellular Acidic Vesicles and Regulates Cation Homeostasis and Neuronal Integrity. Hum Mol Genet 21: 1725–1743.
[18]
Gitler AD, Chesi A, Geddie ML, Strathearn KE, Hamamichi S, et al. (2009) Alpha-synuclein is part of a diverse and highly conserved interaction network that includes PARK9 and manganese toxicity. Nat Genet 41: 308–315.
[19]
Schmidt K, Wolfe DM, Stiller B, Pearce DA (2009) Cd2+, Mn2+, Ni2+ and Se2+ toxicity to Saccharomyces cerevisiae lacking YPK9p the orthologue of human ATP13A2. Biochem Biophys Res Commun 383: 198–202.
[20]
Missiaen L, Raeymaekers L, Dode L, Vanoevelen J, Van Baelen K, et al. (2004) SPCA1 pumps and Hailey-Hailey disease. Biochem Biophys Res Commun 322: 1204–1213.
[21]
Ton VK, Rao R (2004) Functional expression of heterologous proteins in yeast: insights into Ca2+ signaling and Ca2+-transporting ATPases. Am J Physiol Cell Physiol 287: C580–589.
[22]
Bowman EJ, Siebers A, Altendorf K (1988) Bafilomycins: a class of inhibitors of membrane ATPases from microorganisms, animal cells, and plant cells. Proc Natl Acad Sci U S A 85: 7972–7976.
[23]
Leitch S, Feng M, Muend S, Braiterman LT, Hubbard AL, et al. (2011) Vesicular distribution of Secretory Pathway Ca(2)+-ATPase isoform 1 and a role in manganese detoxification in liver-derived polarized cells. Biometals 24: 159–170.
[24]
Tan J, Zhang T, Jiang L, Chi J, Hu D, et al. (2011) Regulation of intracellular manganese hemeostasis by kufor-rakeb syndrome associated ATP13A2. J Biol Chem 286: 29654–29662.
[25]
Grunewald A, Arns B, Seibler P, Rakovic A, Munchau A, et al. (2012) ATP13A2 mutations impair mitochondrial function in fibroblasts from patients with Kufor-Rakeb syndrome. Neurobiol Aging.
[26]
Gusdon AM, Zhu J, Van Houten B, Chu CT (2012) ATP13A2 regulates mitochondrial bioenergetics through macroautophagy. Neurobiol Dis 45: 962–972.
[27]
Usenovic M, Tresse E, Mazzulli JR, Taylor JP, Krainc D (2012) Deficiency of ATP13A2 leads to lysosomal dysfunction, alpha-synuclein accumulation, and neurotoxicity. J Neurosci 32: 4240–4246.
[28]
MacLeod D, Dowman J, Hammond R, Leete T, Inoue K, et al. (2006) The familial Parkinsonism gene LRRK2 regulates neurite process morphology. Neuron 52: 587–593.
[29]
Mukhopadhyay S, Linstedt AD (2011) Identification of a gain-of-function mutation in a Golgi P-type ATPase that enhances Mn2+ efflux and protects against toxicity. Proc Natl Acad Sci U S A 108: 858–863.
[30]
Jackson WT, Giddings TH Jr, Taylor MP, Mulinyawe S, Rabinovitch M, et al. (2005) Subversion of cellular autophagosomal machinery by RNA viruses. PLoS Biol 3: e156.
[31]
Sherer NM, Lehmann MJ, Jimenez-Soto LF, Ingmundson A, Horner SM, et al. (2003) Visualization of retroviral replication in living cells reveals budding into multivesicular bodies. Traffic 4: 785–801.
[32]
Vonderheit A, Helenius A (2005) Rab7 associates with early endosomes to mediate sorting and transport of Semliki forest virus to late endosomes. PLoS Biol 3: e233.
[33]
Choudhury A, Dominguez M, Puri V, Sharma DK, Narita K, et al. (2002) Rab proteins mediate Golgi transport of caveola-internalized glycosphingolipids and correct lipid trafficking in Niemann-Pick C cells. J Clin Invest 109: 1541–1550.
[34]
Moore DJ, West AB, Dikeman DA, Dawson VL, Dawson TM (2008) Parkin mediates the degradation-independent ubiquitination of Hsp70. J Neurochem 105: 1806–1819.
[35]
Moore DJ, Zhang L, Troncoso J, Lee MK, Hattori N, et al. (2005) Association of DJ-1 and parkin mediated by pathogenic DJ-1 mutations and oxidative stress. Hum Mol Genet 14: 71–84.
[36]
Ramonet D, Daher JP, Lin BM, Stafa K, Kim J, et al. (2011) Dopaminergic neuronal loss, reduced neurite complexity and autophagic abnormalities in transgenic mice expressing G2019S mutant LRRK2. PLoS One 6: e18568.