全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
PLOS ONE  2012 

Breakdown of Mucin as Barrier to Digestive Enzymes in the Ischemic Rat Small Intestine

DOI: 10.1371/journal.pone.0040087

Full-Text   Cite this paper   Add to My Lib

Abstract:

Loss of integrity of the epithelial/mucosal barrier in the small intestine has been associated with different pathologies that originate and/or develop in the gastrointestinal tract. We showed recently that mucin, the main protein in the mucus layer, is disrupted during early periods of intestinal ischemia. This event is accompanied by entry of pancreatic digestive enzymes into the intestinal wall. We hypothesize that the mucin-containing mucus layer is the main barrier preventing digestive enzymes from contacting the epithelium. Mucin breakdown may render the epithelium accessible to pancreatic enzymes, causing its disruption and increased permeability. The objective of this study was to investigate the role of mucin as a protection for epithelial integrity and function. A rat model of 30 min splanchnic arterial occlusion (SAO) was used to study the degradation of two mucin isoforms (mucin 2 and 13) and two epithelial membrane proteins (E-cadherin and toll-like receptor 4, TLR4). In addition, the role of digestive enzymes in mucin breakdown was assessed in this model by luminal inhibition with acarbose, tranexamic acid, or nafamostat mesilate. Furthermore, the protective effect of the mucin layer against trypsin-mediated disruption of the intestinal epithelium was studied in vitro. Rats after SAO showed degradation of mucin 2 and fragmentation of mucin 13, which was not prevented by protease inhibition. Mucin breakdown was accompanied by increased intestinal permeability to FITC-dextran as well as degradation of E-cadherin and TLR4. Addition of mucin to intestinal epithelial cells in vitro protected against trypsin-mediated degradation of E-cadherin and TLR4 and reduced permeability of FITC-dextran across the monolayer. These results indicate that mucin plays an important role in the preservation of the mucosal barrier and that ischemia but not digestive enzymes disturbs mucin integrity, while digestive enzymes actively mediate epithelial cell disruption.

References

[1]  Corfield A, Myerscough N, Longman R, Sylvester P, Arul S, et al. (2000) Mucins and mucosal protection in the gastrointestinal tract: new prospects for mucins in the pathology of gastrointestinal disease. Gut 47: 589.
[2]  Corfield AP, Carroll D, Myerscough N, Probert C (2001) Mucins in the gastrointestinal tract in health and disease. Front Biosci 6: D1321–1357.
[3]  Chang M, Kistler EB, Schmid-Sch?nbein GW (2012) Disruption of the mucosal barrier during gut ischemia allows entry of digestive enzymes into the intestinal wall. Shock 37: 297.
[4]  Rupani B, Caputo FJ, Watkins AC, Vega D, Magnotti LJ, et al. (2007) Relationship between disruption of the unstirred mucus layer and intestinal restitution in loss of gut barrier function after trauma hemorrhagic shock. Surgery 141: 481–489.
[5]  Haglund U, Abe T, Ahren C, Braide I, Lundgren O (1976) The intestinal mucosal lesions in shock. I. Studies on the pathogenesis. Eur Surg Res 8: 435–447.
[6]  Atuma C, Strugala V, Allen A, Holm L (2001) The adherent gastrointestinal mucus gel layer: thickness and physical state in vivo. American Journal of Physiology-Gastrointestinal and Liver Physiology 280: G922–G929.
[7]  Lichtenberger L (1995) The hydrophobic barrier properties of gastrointestinal mucus. Annual review of physiology 57: 565–583.
[8]  Gum J Jr (1995) Human mucin glycoproteins: Varied structures predict diverse properties and specific functions. Biochemical Society Transactions 23: 795.
[9]  Strous GJ, Dekker J (1992) Mucin-type glycoproteins. Critical reviews in biochemistry and molecular biology 27: 57–92.
[10]  Allen A, Snary D (1972) The structure and function of gastric mucus. Gut 13: 666.
[11]  Lamont JT (1992) Mucus: the front line of intestinal mucosal defense. Annals of the New York Academy of Sciences 664: 190–201.
[12]  Werb Z (1997) ECM and Cell Surface Proteolysis: Minireview Regulating Cellular Ecology. Cell 91: 439–442.
[13]  Coughlin SR (2000) Thrombin signalling and protease-activated receptors. Nature 407: 258–264.
[14]  Giannelli G, Falk-Marzillier J, Schiraldi O, Stetler-Stevenson WG, Quaranta V (1997) Induction of cell migration by matrix metalloprotease-2 cleavage of laminin-5. Science 277: 225.
[15]  Yu Q, Stamenkovic I (2000) Cell surface-localized matrix metalloproteinase-9 proteolytically activates TGF-β and promotes tumor invasion and angiogenesis. Genes & development 14: 163.
[16]  Epstein FH, Fish EM, Molitoris BA (1994) Alterations in epithelial polarity and the pathogenesis of disease states. New England Journal of Medicine 330: 1580–1588.
[17]  Man Y, Hart VJ, Ring CJ, Sanjar S, West MR (2000) Loss of epithelial integrity resulting from E-cadherin dysfunction predisposes airway epithelial cells to adenoviral infection. American journal of respiratory cell and molecular biology 23: 610.
[18]  Hotchkiss RS, Karl IE (2003) The pathophysiology and treatment of sepsis. New England Journal of Medicine 348: 138–150.
[19]  Lorenz E, Mira JP, Frees KL, Schwartz DA (2002) Relevance of mutations in the TLR4 receptor in patients with gram-negative septic shock. Archives of internal medicine 162: 1028.
[20]  Sodhi C, Levy R, Gill R, Neal MD, Richardson W, et al. (2011) DNA attenuates enterocyte Toll-like receptor 4-mediated intestinal mucosal injury after remote trauma. American Journal of Physiology-Gastrointestinal and Liver Physiology 300: G862–G873.
[21]  Moses T, Wagner L, Fleming SD (2009) TLR4-mediated Cox-2 expression increases intestinal ischemia/reperfusion-induced damage. Journal of leukocyte biology 86: 971–980.
[22]  Chang M, Kistler EB, Schmid-Sch?nbein GW (2011) Disruption of the Mucosal Barrier during Gut Ischemia Allows Entry of Digestive Enzymes into the Intestinal Wall. Shock.
[23]  Zimmerman M, Ashe B, Yurewicz EC, Patel G (1977) Sensitive assays for trypsin, elastase, and chymotrypsin using new fluorogenic substrates. Anal Biochem 78: 47–51.
[24]  Henkel E, Morich S, Henkel R (1984) 2-Chloro-4-nitrophenyl-?-D-maltoheptaosi?de:A New Substrate for the Determination of α-Amylase in Serum and Urine. Clinical Chemistry and Laboratory Medicine 22: 489–496.
[25]  Kim MJ, Lee SB, Lee HS, Lee SY, Baek JS, et al. (1999) Comparative Study of the Inhibition of [alpha]-Glucosidase,[alpha]-Amylase, and Cyclomaltodextrin Glucanosyltransferase by Acarbose, Isoacarbose, and Acarviosine-Glucose. Archives of biochemistry and biophysics 371: 277–283.
[26]  Andersson L, Nilsson IM, Niléhn JE, Hedner U, Granstrand B, et al. (1965) Experimental and Clinical Studies on AMCA, the Antifibrinolytically Active Isomer of p Aminomethyl Cyclohexane Carboxylic Acid. Scandinavian Journal of Haematology 2: 230–247.
[27]  Dubber AHC, McNicol G, Douglas A (1965) Amino methyl cyclohexane carboxylic acid (AMCHA), a new synthetic fibrinolytic inhibitor. British Journal of Haematology 11: 237–245.
[28]  Fujii S, Hitomi Y (1981) New synthetic inhibitors of C1r [combining macron], C1 esterase, thrombin, plasmin, kallikrein and trypsin. Biochimica et Biophysica Acta (BBA)-Enzymology 661: 342–345.
[29]  Bounous G, McArdle AH, Hodges DM, Hampson LG, Gurd FN (1966) Biosynthesis of intestinal mucin in shock: relationship to tryptic hemorrhagic enteritis and permeability to curare. Ann Surg 164: 13–22.
[30]  Albanese CT, Cardona M, Smith SD, Watkins S, Kurkchubasche AG, et al. (1994) Role of intestinal mucus in transepithelial passage of bacteria across the intact ileum in vitro. Surgery 116: 76.
[31]  Maxson RT, Dunlap JP, Tryka F, Jackson RJ, Smith SD (1994) The role of the mucus gel layer in intestinal bacterial translocation. Journal of Surgical Research 57: 682–686.
[32]  Green G, Nasset E (1980) Importance of bile in regulation of intraluminal proteolytic enzyme activities in the rat. Gastroenterology 79: 695–702.
[33]  Miyasaka K, Green G (1984) Effect of partial exclusion of pancreatic juice on rat basal pancreatic secretion. Gastroenterology 86: 114.
[34]  Helgason CD, Miller CL (2005) Culture of Primary Adherent Cells and a Continuously Growing Nonadherent Cell Line; Walker JM, editor. Totowa, New Jersey: Humana Pr Inc.
[35]  Choi YJ, Im E, Pothoulakis C, Rhee SH (2010) TRIF modulates TLR5-dependent responses by inducing proteolytic degradation of TLR5. Journal of Biological Chemistry 285: 21382.
[36]  de Zoete MR, Bouwman LI, Keestra AM, van Putten JPM (2011) Cleavage and activation of a Toll-like receptor by microbial proteases. Proceedings of the National Academy of Sciences 108: 4968.
[37]  Nimmerfall F, Rosenthaler J (1980) Significance of the goblet-cell mucin layer, the outermost luminal barrier to passage through the gut wall. Biochemical and biophysical research communications 94: 960–966.
[38]  Kemper AC, Specian RD (1991) Rat small intestinal mucins: a quantitative analysis. The Anatomical record 229: 219–226.
[39]  Forstner JF, Roomi NW, Fahim R, Forstner GG (1981) Cholera toxin stimulates secretion of immunoreactive intestinal mucin. American Journal of Physiology-Gastrointestinal and Liver Physiology 240: G10–G16.
[40]  LaMont JT, Turner BS, DiBenedetto D, Handin R, Schafer AI (1983) Arachidonic acid stimulates mucin secretion in prairie dog gallbladder. American Journal of Physiology-Gastrointestinal and Liver Physiology 245: G92–G98.
[41]  Faure M, Mo?nnoz D, Montigon F, Mettraux C, Breuillé D, et al. (2005) Dietary threonine restriction specifically reduces intestinal mucin synthesis in rats. The Journal of nutrition 135: 486.
[42]  Merlin D, Augeron C, Tien XY, Guo X, Laboisse C, et al. (1994) ATP-stimulated electrolyte and mucin secretion in the human intestinal goblet cell line HT29-C1. 16E. Journal of Membrane Biology 137: 137–149.
[43]  Guzman K, Bader T, Nettesheim P (1996) Regulation of MUC5 and MUC1 gene expression: correlation with airway mucous differentiation. American Journal of Physiology-Lung Cellular and Molecular Physiology 270: L846–L853.
[44]  Gendler S, Spicer A (1995) Epithelial mucin genes. Annual review of physiology 57: 607–634.
[45]  Rong M, Rossi EA, Zhang J, McNeer RR, van den Brande JMH, et al. (2005) Expression and localization of Muc4/sialomucin complex (SMC) in the adult and developing rat intestine: implications for Muc4/SMC function. Journal of cellular physiology 202: 275–284.
[46]  Velcich A, Yang WC, Heyer J, Fragale A, Nicholas C, et al. (2002) Colorectal cancer in mice genetically deficient in the mucin Muc2. Science 295: 1726–1729.
[47]  Van der Sluis M, De Koning BAE, De Bruijn ACJM, Velcich A, Meijerink JPP, et al. (2006) Muc2-deficient mice spontaneously develop colitis, indicating that MUC2 is critical for colonic protection. Gastroenterology 131: 117–129.
[48]  Lu P, Burger-van Paassen N, Van Der Sluis M, Witte-Bouma J, Kerckaert JP, et al. (2011) Colonic gene expression patterns of mucin muc2 knockout mice reveal various phases in colitis development. Inflammatory bowel diseases 17: 2047–2057.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133