Cotton plants engineered for resistance to the herbicides, glyphosate or glufosinate have made a considerable impact on the production of the crop worldwide. In this work, embryogenic cell cultures derived from Gossypium hirsutum L. cv Coker 312 hypocotyl callus were transformed via Agrobacterium tumefaciens with the rice cytochrome P450 gene, CYP81A6 (bel). In rice, bel has been shown to confer resistance to both bentazon and sulfanylurea herbicides. Transformed cells were selected on a liquid medium supplemented alternately or simultaneously with kanamycin (50mg/L) and bentazon (4.2 μmol). A total of 17 transgenic cotton lines were recovered, based on the initial resistance to bentazon and on PCR detection of the bel transgene. Bel integration into the cotton genome was confirmed by Southern blot and expression of the transgene was verified by RT-PCR. In greenhouse and experimental plot trials, herbicide (bentazon) tolerance of up to 1250mg/L was demonstrated in the transgenic plants. Transgenic lines with a single copy of the bel gene showed normal Mendelian inheritance of the characteristic. Importantly, resistance to bentazon was shown to be stably incorporated in the T1, T2 and T3 generations of self-fertilised descendents and in plants outcrossed to another upland cotton cultivar. Engineering resistance to bentazon in cotton through the heterologous expression of bel opens the possibility of incorporating this trait into elite cultivars, a strategy that would give growers a more flexible alternative to weed management in cotton crops.
References
[1]
Bayley C, Trolinder N, Ray C, Morgan M, Quisenberry JE, et al. (1992) Engineering 2, 4-D resistance into cotton. Theor Appl Genet 83: 645–649.
[2]
Keller G, Spatola L, Mcabe D, Martinell B, Swain W, et al. (1997) Transgenic cotton resistant to herbicide bialaphos. Transgenic Res 6: 385–392.
[3]
Stalker DM, Kiser JA, Baldwin G, Coulombe B, Houck CM (1996) Cotton weed control using the BXN? system. In: Duke , S.O , editors. pp. 93–105. New York, USA: Lewis Publishers.
[4]
McFadden JJ, Gronwald JW, Eberlein CV (1990) In vitro hydroxylation of bentazon by microsomes from naphthalic anhydride-treated corn shoots. Biochem Biophys Res Commun 168: 206–213.
[5]
Leah JM, Worrall TL, Cobb AH (1991) A study of bentazon uptake and metabolism in the presence of cytochrome P450 and acethyl-coenzyme, a carboxylase inhibitor. Pestic Biochem Physiol 39: 232–239.
[6]
Burton JD, Maness EP (1992) Constitutive and inducible bentazon hydroxylation in shattercane (Sorghum bicolor) and johnsongrass (Sorghum halepense). Pestic Biochem Physiol 44: 40–49.
[7]
Forthoffer N, Helvig C, Dillon N, Benveniste I, Zimmerlin A, et al. (2001) Induction and inactivation of a cytochrome P450 conferring herbicide resistance in wheat seedlings. Eur J Drug Metab Pharmacokinet 26: 9–16.
[8]
Brown HM (1990) Mode of action, crop selectivity, and soil relations of the sulfonylurea herbicides. Pestic Sci 29: 263–281.
[9]
Koeppe MK, Brown HM (1995) Sulfonylurea herbicide plant metabolism and crop selectivity. Agro Food Ind Hi-Tech 6: 9–14.
[10]
Deng F, Hatzios KK (2003) Characterization of cytochrome P450-mediated bensulfuron-methyl O-demethylation in rice. Pestic Biochem Physiol 74: 102–115.
[11]
Pan G, Zhang XY, Liu KD, Zhang JW, Wu XZ, et al. (2006) Map-based cloning of a novel rice cytochrome P450 gene CYP81A6 that confers resistance to two different classes of herbicides. Plant Mol Biol 61: 933–943.
Durst F, O’Keffe DP (1995) Plant cytochrome P450: an overview. Drug Metab Drug Interact 12: 171–187.
[14]
Schuler MA (1996) The role of cytochrome P450 monooxgenases in plant-interactions. Plant Physiol 112: 1411–1419.
[15]
Chapple C (1998) Molecular-genetic analysis of plant cytochrome P450-dependent monooxygenases. Annu Rev Plant Physiol Plant Mol Biol 49: 311–343.
[16]
Cou WW, Kutchan T (1998) Enzymatic oxidations in the biosynthesis of complex alkaloids. Plant J 15: 289–300.
[17]
Yamada T, Kambara Y, Imaishi H, Ohkawa H (2000) Molecular cloning of a novel cytochrome P450 species induced by chemical treatments in tobacco cells. Pestic Biochem Physiol 68: 11–25.
[18]
Lamb SB, Lamb DC, Kelly SL, Stuckey DC (1998) Cytochrome P450 immobilisation as a route to bioremediation/biocatalysis. FEBS Lett 431: 343–346.
[19]
Siminszky B, Corbin FT, Ward ER, Fleischmann TJ, Dewey RE (1999) Expression of a soybean P450 monooxygenase cDNA in yeast and tobacco enhances the metabolism of phenylurea herbicides. Proc Natl Acad Sci USA 96: 1750–1755.
[20]
Pierrel MA, Batard Y, Kazmaier M, Mignotte-Vieus C, Durst F, et al. (1994) Catalytic properties of the plant cytochrome P450 CYP73 expressed in yeast. Substrate specificity of a cinnamate hydroxylase. Eur J Biochem 224: 835–844.
[21]
Didierjean L, Gondet L, Perkins R, Lau SC, Schaller H, et al. (2002) Engineering herbicide metabolism in tobacco and Arabidopsis with CYP76B1, a cytochrome P450 enzyme from Jerusalem artichoke. Plant Physiol 130: 179–189.
[22]
Cabello-Hurtado F, Batard Y, Salaun JP, Durst F, Pinot F, et al. (1998) Cloning, expression in yeast, and functional characterization of CYP81B1, a plant cytochrome P450 that catalyzes in-chain hydroxylation of fatty acids. J Biol Chem 273: 7260–7267.
[23]
Robineau T, Batard Y, Nedelkina S, Cabello-Hurtado F, LeRet M, et al. (1998) The chemically-inducible plant cytochrome P450 CYP76B1 actively metabolizes phenylureas and other xenobiotics. Plant Physiol 118: 1049–1056.
[24]
Sawahel WA, Cove DJ (1992) Gene transfer strategies in plants. Biotechnology Advances 10 (3): 393–412.
[25]
Wilkins TA, Mishra R, Trolinder NL (2004) Agrobacterium-mediated transformation and regeneration of cotton. Food Agriculture Environment 2: 179–187.
[26]
Wilkins TA, Rajasekaran K, Anderson DM (2000) Cotton biotechnology. Crit Rev Plant Sci 19: 511–550.
[27]
Murashige T, Skoog F (1962) A revised medium for rapid growth and bioassays with tobacco tissue culture. Physiol Plant 15: 473–497.
[28]
Gamborg OL, Miller RA, Ojima K (1968) Nutrient requirements of suspension cultures of soybean root cells. Exp Cell Res 50: 151–158.
[29]
Hooykaas PJJ (1988) Agrobacterium molecular genetics. In SB Gelvin, RA Schilperoort, eds, Plant Molecular Biology Manual. Kluwer Academic Publishers, Dordrecht, The Netherlands, A4–A13.
[30]
Bowyer P (2001) DNA-mediated transformation of fungi. In: Talbot N (ed) Molecular and Cellular Biology of Filamentous Fungi. Oxford Univ Press, Oxford, 33–46.
[31]
Bertani G (1951) Studies on lysogenesis. I. The mode of phage liberation by lysogenic Escherichia coli. J. Bacteriol. 62: 293–300.
[32]
Paterson AH, Brubaker CL, Wendel JF (1993) A rapid method for extraction of cotton (Gossypium spp.) genomic DNA suitable for RFLP or PCR analysis. Plant Mol Biol Rep 11: 122–127.
[33]
Sambrook J, Fritschi EF, Maniatis T (1989) Molecular cloning: a laboratory manual, Cold Spring Harbor Laboratory Press, New York.
[34]
Firoozabady E, DeBoer DL, Merlo DJ, Halk EL, Amerson LN, et al. (1987) Transformation of cotton (Gossypium hirsutum L.) by Agrobacterium tumefaciens and regeneration of transgenic plants. Plant Mol Biol 10: 105–116.
[35]
Sun YQ, Zhang XL, Huang C, Nie YC, Guo XP (2005) Plant regeneration via somatic embryogenesis from protoplasts of six explants in Coker 201 (Gossypium hirsutum L.). Plant Cell Tiss Organ Cult 82: 309–315.
[36]
Sun YQ, Zhang XL, Nie YC, Guo XP, Jin SX, et al. (2004) Production and characterization of somatic hybrids between upland cotton (Gossypium hirsutum) and wild cotton (G. klotzschianum Anderss) via electrofusion. Theor Appl Genet 2004 109: 472–479.
[37]
Sun YQ, Zhang XL, Nie YC, Guo XP (2005) Production of fertile somatic hybrids of Gossypium hirsutum + G. bickii and G. hirsutum + G. stockii via protoplast fusion. Plant Cell Tiss Organ Cult 83: 303–310.