全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
PLOS ONE  2007 

A Novel Regulator Couples Sporogenesis and Trehalose Biogenesis in Aspergillus nidulans

DOI: 10.1371/journal.pone.0000970

Full-Text   Cite this paper   Add to My Lib

Abstract:

Trehalose is a compatible osmolyte produced by bacteria, fungi, insects and plants to protect the integrity of cells against various environmental stresses. Spores, the reproductive, survival and infection bodies of fungi require high amounts of trehalose for long-term survival. Here, via a gain-of-function genetic screen, we identify the novel regulator VosA that couples the formation of spores and focal trehalose biogenesis in the model fungus Aspergillus nidulans. The vosA gene is expressed specifically during the formation of both sexual and asexual spores (conidia). Levels of vosA mRNA and protein are high in both types of spore. The deletion of vosA results in the lack of trehalose in spores, a rapid loss of the cytoplasm, organelles and viability of spores, and a dramatic reduction in tolerance of conidia to heat and oxidative stress. Moreover, the absence of vosA causes uncontrolled activation of asexual development, whereas the enhanced expression of vosA blocks sporulation, suggesting that VosA also functions in negative-feedback regulation of sporogenesis. VosA localizes in the nucleus of mature conidia and its C-terminal region contains a potential transcription activation domain, indicating that it may function as a transcription factor primarily controlling the late process of sporulation including trehalose biogenesis. VosA is conserved in most fungi and may define a new fungus-specific transcription factor family.

References

[1]  Elbein AD, Pan YT, Pastuszak I, Carroll D (2003) New insights on trehalose: a multifunctional molecule. Glycobiology 13: 17R–27R.
[2]  Crowe JH (2007) Trehalose as a “chemical chaperone”: fact and fantasy. Adv Exp Med Biol 594: 143–158.
[3]  Hardin BD, Kelman BJ, Saxon A (2003) Adverse human health effects associated with molds in the indoor environment. J Occup Environ Med 45: 470–478.
[4]  Crameri R, Weichel M, Fluckiger S, Glaser AG, Rhyner C (2006) Fungal allergies: a yet unsolved problem. Chem Immunol Allergy 91: 121–133.
[5]  Timberlake WE, Clutterbuck AJ (1994) Genetic regulation of conidiation. In: Martinelli SD, Kinghorn JR, editors. Aspergillus: 50 years on. Amsterdam: Elsevier. pp. 383–427.
[6]  Adams TH, Wieser JK, Yu J-H (1998) Asexual sporulation in Aspergillus nidulans. Microbiol Mol Biol Rev 62: 35–54.
[7]  Adams TH, Boylan MT, Timberlake WE (1988) brlA is necessary and sufficient to direct conidiophore development in Aspergillus nidulans. Cell 54: 353–362.
[8]  Andrianopoulos A, Timberlake WE (1994) The Aspergillus nidulans abaA gene encodes a transcriptional activator that acts as a genetic switch to control development. Mol Cell Biol 14: 2503–2515.
[9]  Sewall TC, Mims CW, Timberlake WE (1990) Conidium differentiation in Aspergillus nidulans wild-type and wet-white (wetA) mutant strains. Dev Biol 138: 499–508.
[10]  Marshall MA, Timberlake WE (1991) Aspergillus nidulans wetA activates spore-specific gene expression. Mol Cell Biol 11: 55–62.
[11]  Mirabito PM, Adams TH, Timberlake WE (1989) Interactions of three sequentially expressed genes control temporal and spatial specificity in Aspergillus development. Cell 57: 859–868.
[12]  Mah J-H, Yu J-H (2006) Upstream and downstream regulation of asexual development in Aspergillus fumigatus. Eukaryot Cell 5: 1585–1595.
[13]  Yamada O, Lee BR, Gomi K, Iimura Y (1999) Cloning and functional analysis of the Aspergillus oryzae conidiation regulator gene brlA by its disruption and misscheduled expression. J Biosci Bioeng 87: 424–429.
[14]  Aguirre J, Adams TH, Timberlake WE (1990) Spatial control of developmental regulatory genes in Aspergillus nidulans. Exp Mycol 14: 290–293.
[15]  Kim H, Han K, Kim K, Han D, Jahng K, et al. (2002) The veA gene activates sexual development in Aspergillus nidulans. Fungal Genet Biol 37: 72–80.
[16]  Kato N, Brooks W, Calvo AM (2003) The expression of sterigmatocystin and penicillin genes in Aspergillus nidulans is controlled by veA, a gene required for sexual development. Eukaryot Cell 2: 1178–1186.
[17]  Calvo AM, Bok J, Brooks W, Keller NP (2004) veA is required for toxin and sclerotial production in Aspergillus parasiticus. Appl Environ Microbiol 70: 4733–4739.
[18]  Li S, Myung K, Guse D, Donkin B, Proctor RH, et al. (2006) FvVE1 regulates filamentous growth, the ratio of microconidia to macroconidia and cell wall formation in Fusarium verticillioides. Mol Microbiol 62: 1418–1432.
[19]  Osherov N, Mathew J, May GS (2000) Polarity-defective mutants of Aspergillus nidulans. Fungal Genet Biol 31: 181–188.
[20]  Galagan JE, Calvo SE, Cuomo C, Ma LJ, Wortman JR, et al. (2005) Sequencing of Aspergillus nidulans and comparative analysis with A. fumigatus and A. oryzae. Nature 438: 1105–1115.
[21]  Fillinger S, Chaveroche M, van Dijck P, de Vries R, Ruijter G, et al. (2001) Trehalose is required for the acquisition of tolerance to a variety of stresses in the filamentous fungus Aspergillus nidulans. Microbiology 147: 1851–1862.
[22]  Borgia PT, Miao Y, Dodge CL (1996) The orlA gene from Aspergillus nidulans encodes a trehalose-6-phosphate phosphatase necessary for normal growth and chitin synthesis at elevated temperatures. Mol Microbiol 20: 1287–1296.
[23]  d'Enfert C, Fontaine T (1997) Molecular characterization of the Aspergillus nidulans treA gene encoding an acid trehalase required for growth on trehalose. Mol Microbiol 24: 203–216.
[24]  d'Enfert C, Bonini BM, Zapella PD, Fontaine T, da Silva AM, et al. (1999) Neutral trehalases catalyse intracellular trehalose breakdown in the filamentous fungi Aspergillus nidulans and Neurospora crassa. Mol Microbiol 32: 471–483.
[25]  Gwynne D I, Buxton FP, Sibley S, Davies RW, Lockington RA, et al. (1987) Comparison of the cis-acting control regions of two coordinately controlled genes involved in ethanol utilization in Aspergillus nidulans. Gene 51: 205–216.
[26]  Stringer MA, Dean RA, Sewall TC, Timberlake WE (1991) Rodletless, a new Aspergillus developmental mutant induced by directed gene inactivation. Genes Dev 5: 1161–1171.
[27]  Mayorga ME, Timberlake WE (1992) The developmentally regulated Aspergillus nidulans wA gene encodes a polypeptide homologous to polyketide and fatty acid synthases. Mol Gen Genet 235: 205–212.
[28]  Aramayo R, Timberlake WE (1990) Sequence and molecular structure of the Aspergillus nidulans yA (laccase I) gene. Nucleic Acids Res 18: 3415.
[29]  Yu J-H, Butchko RA, Fernandes M, Keller NP, Leonard TJ, et al. (1996) Conservation of structure and function of the aflatoxin regulatory gene aflR from Aspergillus nidulans and A. flavus. Curr Genet 29: 549–555.
[30]  Fernandes M, Keller NP, Adams TH (1998) Sequence-specific binding by Aspergillus nidulans AflR, a C6 zinc cluster protein regulating mycotoxin biosynthesis. Mol Microbiol 28: 1355–1365.
[31]  James P, Halladay J, Craig EA (1996) Genomic libraries and a host strain designed for highly efficient two-hybrid selection in yeast. Genetics 144: 1425–1436.
[32]  Mims CW, Richardson EA, Timberlake WE (1988) Ultrastructural analysis of conidiophore development in the fungus Aspergillus nidulans using freeze-substitution. Protoplasma 144: 132–141.
[33]  Lingappa BT, Sussman AS (1959) Endogenous substrates of dormant, activated and germinating ascospores of Neurospora tetrasperma. Plant Physiol 34: 466–472.
[34]  Boylan MT, Mirabito PM, Willett CE, Zimmerman CR, Timberlake WE (1987) Isolation and physical characterization of three essential conidiation genes from Aspergillus nidulans. Mol Cell Biol 7: 3113–3118.
[35]  Seo J-A, Guan Y, Yu J-H (2003) Suppressor mutations bypass the requirement of fluG for asexual sporulation and sterigmatocystin production in Aspergillus nidulans. Genetics 165: 1083–1093.
[36]  Seo J-A, Guan Y, Yu J-H (2006) FluG-dependent asexual development in Aspergillus nidulans occurs via derepression. Genetics 172: 1535–1544.
[37]  Foster AJ, Jenkinson JM, Talbot NJ (2003) Trehalose synthesis and metabolism are required at different stages of plant infection by Magnaporthe grisea. EMBO J 22: 225–235.
[38]  Pontecorvo G, Roper JA, Hemmons LM, Macdonald KD, Bufton AWJ (1953) The genetics of Aspergillus nidulans. Adv Genet 5: 141–238.
[39]  K?fer E (1977) Meiotic and mitotic recombination in Aspergillus and its chromosomal aberrations. Adv Genet 19: 33–131.
[40]  Yu J-H, Hamari Z, Han K-H, Seo J-A, Reyes-Domínguez Y, et al. (2004) Double-joint PCR: a PCR-based molecular tool for gene manipulation in filamentous fungi. Fungal Genet Biol 41: 973–981.
[41]  Campbell RE, Tour O, Palmer AE, Steinbach PA, Baird GS, et al. (2002) A monomeric red fluorescent protein. Proc Natl Acad Sci USA 99: 7877–7882.
[42]  Wieser J, Adams TH (1995) flbD encodes a Myb-like DNA-binding protein that coordinates initiation of Aspergillus nidulans conidiophore development. Genes Dev 9: 491–502.
[43]  Punt PJ, Zegers ND, Busscher M, Pouwels PH, van den Hondel CA (1991) Intracellular and extracellular production of proteins in Aspergillus under the control of expression signals of the highly expressed Aspergillus nidulans gpdA gene. J Biotechnol 17: 19–33.
[44]  Takeshita N, Ohta A, Horiuchi H (2002) csmA, a gene encoding a class V chitin synthase with a myosin motor-like domain of Aspergillus nidulans, is translated as a single polypeptide and regulated in response to osmotic conditions. Biochem Biophys Res Commun 298: 103–109.
[45]  Han K-H, Seo J-A, Yu J-H (2004) Regulators of G-protein signaling in Aspergillus nidulans: RgsA downregulates stress response and stimulate asexual sporulation through attenuation of GanB (Gα) signaling. Mol Microbiol 53: 529–540.
[46]  Agatep R, Kirkpatrick RD, Parchaliuk DL, Woods RA, Gietz RD (1998) Transformation of Saccharomyces cerevisiae?by the lithium acetate/single-stranded carrier DNA/polyethylene glycol (LiAc/ss-DNA/PEG) protocol. Technical Tips Online 1: 51:P01525. http://www.umanitoba.ca/faculties/medici?ne/biochem/gietz/2HS.html.
[47]  Ursic D, Chinchilla K, Finkel JS, Culbertson MR (2004) Multiple protein/protein and protein/RNA interactions suggest roles for yeast DNA/RNA helicase Sen1p in transcription, transcription-coupled DNA repair and RNA processing. Nucleic Acids Res 32: 2441–2452.
[48]  Momany M (2001) Cell biology of the duplication cycle in fungi. In: Talbot N, editor. Molecular and cellular biology of filamentous fungi. New York: Oxford University Press. pp. 119–125.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133