全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
PLOS ONE  2007 

Proprotein Convertase Subtilisin/Kexin Type 9 (PCSK9) Gene Is a Risk Factor of Large-Vessel Atherosclerosis Stroke

DOI: 10.1371/journal.pone.0001043

Full-Text   Cite this paper   Add to My Lib

Abstract:

Background/Purpose Genetic variation in proprotein convertase subtilisin/kexin type 9 (PCSK9) gene has been recently identified as an important determinant of plasma LDL-cholesterol and severity of coronary heart disease. We studied whether the PCSK9 gene is linked to the risk of ischemic stroke (IS) and with the development of intracranial atherosclerosis. Methods/Results The pivotal E670G polymorphism, tagging an important haplotype of the PCSK9 gene, was genotyped in two independent studies. The Belgium Stroke Study included 237 middle aged (45–60) Belgian patients, with small-vessel occlusion (SVO) and large-vessel atherosclerosis stroke (LVA), and 326 gender and ethnicity matched controls (>60 yrs) without a history of stroke. In multivariate analysis the minor allele (G) carriers appeared as a significant predictor of LVA (OR = 3.52, 95% CI 1.25–9.85; p = 0.017). In a Finnish crossectional population based consecutive autopsy series of 604 males and females (mean age 62.5 years), G-allele carriers tended to have more severe allele copy number-dependent (p = 0.095) atherosclerosis in the circle of Willis and in its branches. Conclusion Our findings in this unique combination of clinical and autopsy data, provide evidence that PCSK9 gene associates with the risk of LVA stroke subtype, and suggest that the risk is mediated by the severity of intracranial atherosclerosis.

References

[1]  Flossmann E, Schulz UG, Rothwell PM (2004) Systematic review of methods and results of studies of the genetic epidemiology of ischemic stroke. Stroke 35: 212–227.
[2]  Schulz UG, Flossmann E, Rothwell PM (2004) Heritability of ischemic stroke in relation to age, vascular risk factors, and subtypes of incident stroke in population-based studies. Stroke 35: 819–824.
[3]  Jerrard-Dunne P, Cloud G, Hassan A, Markus HS (2003) Evaluating the genetic component of ischemic stroke subtypes: a family history study. Stroke 34: 1364–1369.
[4]  Polychronopoulos P, Gioldasis G, Ellul J, Metallinos IC, Lekka NP, et al. (2002) Family history of stroke in stroke types and subtypes. J Neurol Sci 195: 117–122.
[5]  Abifadel M, Varret M, Rabes JP, Allard D, Ouguerram K, et al. (2003) Mutations in PCSK9 cause autosomal dominant hypercholesterolemia. Nat Genet 34: 154–156.
[6]  Cohen JC, Boerwinkle E, Mosley TH Jr, Hobbs HH (2006) Sequence variations in PCSK9, low LDL, and protection against coronary heart disease. N Engl J Med 354: 1264–1272.
[7]  Kotowski IK, Pertsemlidis A, Luke A, Cooper RS, Vega GL, et al. (2006) A spectrum of PCSK9 alleles contributes to plasma levels of low-density lipoprotein cholesterol. Am J Hum Genet 78: 410–422.
[8]  Cohen J, Pertsemlidis A, Kotowski IK, Graham R, Garcia CK, et al. (2005) Low LDL cholesterol in individuals of African descent resulting from frequent nonsense mutations in PCSK9. Nat Genet 37: 161–165.
[9]  Chen SN, Ballantyne CM, Gotto AM Jr, Tan Y, Willerson JT, et al. (2005) A common PCSK9 haplotype, encompassing the E670G coding single nucleotide polymorphism, is a novel genetic marker for plasma low-density lipoprotein cholesterol levels and severity of coronary atherosclerosis. J Am Coll Cardiol 45: 1611–1619.
[10]  Zhao Z, Tuakli-Wosornu Y, Lagace TA, Kinch L, Grishin NV, et al. (2006) Molecular Characterization of Loss-of-Function Mutations in PCSK9 and Identification of a Compound Heterozygote. Am J Hum Genet 79: 514–523.
[11]  Humphries SE, Whittall RA, Hubbart CS, Maplebeck S, Cooper JA, et al. (2006) Genetic causes of Familial Hypercholesterolaemia in UK patients: relation to plasma lipid levels and coronary heart disease risk. J Med Genet.
[12]  Naoumova RP, Tosi I, Patel D, Neuwirth C, Horswell SD, et al. (2005) Severe hypercholesterolemia in four British families with the D374Y mutation in the PCSK9 gene: long-term follow-up and treatment response. Arterioscler Thromb Vasc Biol 25: 2654–2660.
[13]  Lagace TA, Curtis DE, Garuti R, McNutt MC, Park SW, et al. (2006) Secreted PCSK9 decreases the number of LDL receptors in hepatocytes and in livers of parabiotic mice. J Clin Invest 116: 2995–3005.
[14]  Evans D, Beil FU (2006) The E670G SNP in the PCSK9 gene is associated with polygenic hypercholesterolemia in men but not in women. BMC Med Genet 7: 66.
[15]  Campbell CD, Ogburn EL, Lunetta KL, Lyon HN, Freedman ML, et al. (2005) Demonstrating stratification in a European American population. Nat Genet 37: 868–872.
[16]  Maxwell KN, Breslow JL (2004) Adenoviral-mediated expression of Pcsk9 in mice results in a low-density lipoprotein receptor knockout phenotype. Proc Natl Acad Sci U S A 101: 7100–7105.
[17]  Park SW, Moon YA, Horton JD (2004) Post-transcriptional regulation of low density lipoprotein receptor protein by proprotein convertase subtilisin/kexin type 9a in mouse liver. J Biol Chem 279: 50630–50638.
[18]  Rashid S, Curtis DE, Garuti R, Anderson NN, Bashmakov Y, et al. (2005) Decreased plasma cholesterol and hypersensitivity to statins in mice lacking Pcsk9. Proc Natl Acad Sci U S A 102: 5374–5379.
[19]  Berge KE, Ose L, Leren TP (2006) Missense mutations in the PCSK9 gene are associated with hypocholesterolemia and possibly increased response to statin therapy. Arterioscler Thromb Vasc Biol 26: 1094–1100.
[20]  Timms KM, Wagner S, Samuels ME, Forbey K, Goldfine H, et al. (2004) A mutation in PCSK9 causing autosomal-dominant hypercholesterolemia in a Utah pedigree. Hum Genet 114: 349–353.
[21]  Leren TP (2004) Mutations in the PCSK9 gene in Norwegian subjects with autosomal dominant hypercholesterolemia. Clin Genet 65: 419–422.
[22]  Wardlaw JM (2005) What causes lacunar stroke? J Neurol Neurosurg Psychiatry 76: 617–619.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133