[1] | Onik G, Rubinsky B, Zemel R, Weaver L, Diamond D, et al. (1991) Ultrasound-guided hepatic cryosurgery in the treatment of metastatic colon carcinoma. Preliminary results. Cancer 67: 901–907.
|
[2] | Onik GM, Cohen JK, Reyes GD, Rubinsky B, Chang Z, et al. (1993) Transrectal ultrasound-guided percutaneous radical cryosurgical ablation of the prostate. Cancer 72: 1291–1299.
|
[3] | Mouraviev V, Polascik TJ (2006) Update on cryotherapy for prostate cancer in 2006. Curr Opin Urol 16: 152–156.
|
[4] | de Baere T, Rehim MA, Teriitheau C, Deschamps F, Lapeyre M, et al. (2006) Usefulness of guiding needles for radiofrequency ablative treatment of liver tumors. Cardiovasc Intervent Radiol 29: 650–654.
|
[5] | Martin RC (2006) Hepatic tumor ablation: cryo versus radiofrequency, which is better? Am Surg 72: 391–392.
|
[6] | Orlowski S, Mir LM (1993) Cell electropermeabilization: a new tool for biochemical and pharmacological studies. Biochim Biophys Acta 1154: 51–63.
|
[7] | Mir LM (2001) Therapeutic perspectives of in vivo cell electropermeabilization. Bioelectrochemistry 53: 1–10.
|
[8] | Andre F, Mir LM (2004) DNA electrotransfer: its principles and an updated review of its therapeutic applications. Gene Ther 11: Suppl 1S33–42.
|
[9] | Mir LM, Moller PH, Andre F, Gehl J (2005) Electric pulse-mediated gene delivery to various animal tissues. Adv Genet 54: 83–114.
|
[10] | Huang Y, Rubinsky B (1999) Micro-Electroporation: Improving the efficiency and understanding of electrical permeabilization of cells. Biomedical Microdevices 2: 145–150.
|
[11] | Davalos R, Huang Y, Rubinsky B (2000) Electroporation: Bio-electrochemical mass transfer at the nano scale. Microscale Thermophysical Engineering 4: 147–159.
|
[12] | Davalos RV, Mir LM, Rubinsky B (2005) Tissue ablation with irreversible electroporation. Ann Biomed Eng 33: 223–231.
|
[13] | Edd JF, Horowitz L, Davalos RV, Mir LM, Rubinsky B (2006) In vivo results of a new focal tissue ablation technique: irreversible electroporation. IEEE Trans Biomed Eng 53: 1409–1415.
|
[14] | Rubinsky B, Onik G, Mikus P (2007) Irreversible electroporation: a new ablation modality–clinical implications. Technol Cancer Res Treat 6: 37–48.
|
[15] | Mir LM, Orlowski S, Belehradek J Jr, Paoletti C (1991) Electrochemotherapy potentiation of antitumour effect of bleomycin by local electric pulses. Eur J Cancer 27: 68–72.
|
[16] | Mir LM, Glass LF, Sersa G, Teissie J, Domenge C, et al. (1998) Effective treatment of cutaneous and subcutaneous malignant tumours by electrochemotherapy. Br J Cancer 77: 2336–2342.
|
[17] | Mir LM, Gehl J, Sersa G, Collins CG, Garbay JR, et al. (2006) Standard Operating Procedures of the Electrochemotherapy. Eur J Cancer Supplements 4: 14–25.
|
[18] | Marty M, Sersa G, Garbay JR, Gehl J, Collins CG, et al. (2006) Electrochemotherapy - an easy, highly effective and safe treatment of cutaneous and subcutaneous metastases: results of the ESOPE (European Standard Operating Procedures of Electrochemotherapy) study. Eur J Cancer Supplements 4: 3–13.
|
[19] | Deng J, Schoenbach KH, Buescher ES, Hair PS, Fox PM, et al. (2003) The effects of intense submicrosecond electrical pulses on cells. Biophys J 84: 2709–2714.
|
[20] | Beebe SJ, White J, Blackmore PF, Deng Y, Somers K, et al. (2003) Diverse effects of nanosecond pulsed electric fields on cells and tissues. DNA Cell Biol 22: 785–796.
|
[21] | Gowrishankar TR, Weaver JC (2006) Electrical behavior and pore accumulation in a multicellular model for conventional and supra-electroporation. Biochem Biophys Res Commun 349: 643–653.
|
[22] | Belehradek M, Domenge C, Luboinski B, Orlowski S, Belehradek J Jr, et al. (1993) Electrochemotherapy, a new antitumor treatment. First clinical phase I–II trial. Cancer 72: 3694–3700.
|
[23] | Gothelf A, Mir LM, Gehl J (2003) Electrochemotherapy: results of cancer treatment using enhanced delivery of bleomycin by electroporation. Cancer Treat Rev 29: 371–387.
|
[24] | Sersa G, Cemazar M, Rudolf Z (2003) Electrochemotherapy: advantages and drawbacks in treatment of cancer patients. Cancer Therapy 1: 133–142.
|
[25] | Sersa G (2006) The State-of-the-art of electrochemotherapy before the ESOPE study; advantages and clinical uses. Eur J Cancer Supplements 4: 52–59.
|
[26] | Nuccitelli R, Pliquett U, Chen X, Ford W, James Swanson R, et al. (2006) Nanosecond pulsed electric fields cause melanomas to self-destruct. Biochem Biophys Res Commun 343: 351–360.
|
[27] | Belehradek J Jr, Barski G, Thonier M (1972) Evolution of cell-mediated antitumor immunity in mice bearing a syngeneic chemically induced tumor. Influence of tumor growth, surgical removal and treatment with irradiated tumor cells. Int J Cancer 9: 461–469.
|
[28] | (1998) United Kingdom Co-ordinating Committee on Cancer Research (UKCCCR) Guidelines for the Welfare of Animals in Experimental Neoplasia (Second Edition). Br J Cancer 77: 1–10.
|
[29] | Becker SM, Kuznetsoz AV (2006) Numerical Modeling of In Vivo Plate Electroporation Thermal Dose Assessment. ASME J of Biomechanical Engineering 128: 76–84.
|
[30] | Damianou CA, Hynynen K, Fan X (1995) Evaluation of accuracy of a theoretical model for predicting the necrosed tissue volume during focused ultrasound surgery. IEEE Transactions on Ultrasonics, Ferroelectrics and Frequency Control 42: 182–187.
|
[31] | Sapareto S, Dewey W (1984) Thermal dose determination in cancer therapy. Int J radiation oncology Biol Phys 10: 787–800.
|
[32] | Davalos RV, Rubinsky B, Mir LM (2003) Theoretical analysis of the thermal effects during in vivo tissue electroporation. Bioelectrochemistry 61: 99–107.
|
[33] | Incropera FP, DeWitt DP (2002) Chapter 5: Transient Conduction. In: Incropera FP, DeWitt DP, editors. Introduction to Heat Transfer. New York: John Wiley and Sons.
|
[34] | White FM (1988) Chapter 1: Introduction. Heat and Mass Transfer. Addision-Wesley Publishing Company, Inc. pp. 1–46.
|
[35] | Deng ZS, Liu J (2001) Blood perfusion-based model for characterizing the temperature fluctuations in living tissue. Phys A STAT Mech Appl 300: 521–530.
|
[36] | Swarup A, Stuchly SS, Surowiec A (1991) Dielectric properties of mouse MCA1 fibrosarcoma at different stages of development. Bioelectromagnetics 12: 1–8.
|
[37] | White FM (1988) Appendix C: Properties of Metallic Solids Heat and Mass Transfer. Addision-Wesley Publishing Company, Inc. pp. 672–673.
|
[38] | Al-Sakere B, Bernat C, André F, Connault E, Opolon P, Davalos RV, Mir LM (2007) A study of the immunological response to tumor ablation with irreversible electroporation. Technol Cancer Res Treat 6: 301–306.
|
[39] | Miklavcic D, Corovic S, Pucihar G, Pavselj N (2006) Importance of tumour coverage by sufficiently high local electric field for effective electrochemotherapy. Eur J Cancer Supplements 4: 45–51.
|
[40] | Miklavcic D, Beravs K, Semrov D, Cemazar M, Demsar F, et al. (1998) The importance of electric field distribution for effective in vivo electroporation of tissues. Biophys J 74: 2152–2158.
|
[41] | Miklavcic D, Semrov D, Mekid H, Mir LM (2000) A validated model of in vivo electric field distribution in tissues for electrochemotherapy and for DNA electrotransfer for gene therapy. Biochim Biophys Acta 1523: 73–83.
|
[42] | Miller L, Leor J, Rubinsky B (2005) Cancer cells ablation with irreversible electroporation. Technol Cancer Res Treat 4: 699–705.
|
[43] | Hahn EW, Alfieri AA, Kim JH (1978) Single dose X-irradiation and concomitant hyperthermia on a murine fibrosarcoma. Cancer 42: 2591–2595.
|
[44] | Mohamed F, Stuart OA, Glehen O, Urano M, Sugarbaker PH (2004) Docetaxel and hyperthermia: factors that modify thermal enhancement. J Surg Oncol 88: 14–20.
|