全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
PLOS ONE  2007 

Three-Dimensional Cell and Tissue Patterning in a Strained Fibrin Gel System

DOI: 10.1371/journal.pone.0001211

Full-Text   Cite this paper   Add to My Lib

Abstract:

Techniques developed for the in vitro reproduction of three-dimensional (3D) biomimetic tissue will be valuable for investigating changes in cell function in tissues and for fabricating cell/matrix composites for applications in tissue engineering techniques. In this study, we show that the simple application of a continuous strain to a fibrin gel facilitates the development of fibril alignment and bundle-like structures in the fibrin gel in the direction of the applied strain. Myoblasts cultured in this gel also exhibited well-aligned cell patterning in a direction parallel to the direction of the strain. Interestingly, the direction of cell proliferation was identical to that of cell alignment. Finally, the oriented cells formed linear groups that were aligned parallel to the direction of the strain and replicated the native skeletal muscle cell patterning. In addition, vein endothelial cells formed a linear, aligned vessel-like structure in this system. Thus, the system enables the in vitro reproduction of 3D aligned cell sets replicating biological tissue patterns.

References

[1]  Chen CS, Mrksich M, Huang S, Whitesides GM, Ingber DE (1997) Geometric control of cell life and death. Science 276: 1425–1428.
[2]  McBeath R, Pirone DM, Nelson CM, Bhadriraju K, Chen CS (2004) Cell shape, cytoskeletal tension, and RhoA regulate stem cell lineage commitment. Dev Cell 6: 483–495.
[3]  Zhu X, Mills KL, Peters PR, Bahng JH, Liu EH, et al. (2005) Fabrication of reconfigurable protein matrices by cracking. Nat Mater 4: 403–406.
[4]  Matsumoto T, Yung YC, Fischbach C, Kong HJ, Nakaoka R, Mooney DJ (2007) Mechanical Strain Regulates Endothelial Cell Patterning in vitro. Tissue Eng 13: 207–217.
[5]  Tan W, Desai TA (2005) Microscale multilayer cocultures for biomimetic blood vessels. J Biomed Mater Res A 72: 146–160.
[6]  Xu T, Jin J, Gregory C, Hickman JJ, Boland T (2005) Inkjet printing of viable mammalian cells. Biomaterials 26: 93–99.
[7]  Sakiyama-Elbert SE, Hubbell JA (2000) Controlled release of nerve growth factor from a heparin-containing fibrin-based cell ingrowth matrix. J Control Release 69: 149–158.
[8]  Thomas AC, Campbell JH (2004) Conjugation of an antibody to cross-linked fibrin for targeted delivery of anti-restenotic drugs. J Control Release 100: 357–377.
[9]  Bhang SH, Jeon O, Choi CY, Kwon YH, Kim BS (2007) Controlled release of nerve growth factor from fibrin gel. J Biomed Mater Res A 80: 998–1002.
[10]  Jockenhoevel S, Zund G, Hoerstrup SP, Chalabi K, Sachweh JS, et al. (2001) Fibrin gel-advantages of a new scaffold in cardiovascular tissue engineering. Eur J Cardiothorac Surg 19: 424–430.
[11]  Eyrich D, Brandl F, Appel B, Wiese H, Maier G, et al. (2007) Long-term stable fibrin gels for cartilage engineering. Biomaterials 28: 55–65.
[12]  Peretti GM, Xu JW, Bonassar LJ, Kirchhoff CH, Yaremchuk MJ, et al. (2006) Review of injectable cartilage engineering using fibrin gel in mice and swine models. Tissue Eng. 12: 1151–1168.
[13]  Engler AJ, Sen S, Sweeney HL, Discher DE (2006) Matrix elasticity directs stem cell lineage specification. Cell 126: 677–689.
[14]  Kong HJ, Liu J, Riddle K, Matsumoto T, Leach K, Mooney DJ (2005) Non-viral gene delivery regulated by stiffness of cell adhesion substrates. Nat Mater 4: 460–464.
[15]  Boontheekul T, Hill EE, Kong HJ, Mooney DJ (2007) Regulating myoblast phenotype through controlled gel stiffness and degradation. Tissue Eng 13: 1431–1442.
[16]  Saez A, Ghibaudo M, Buguin A, Silberzan P, Ladoux B (2007) Rigidity-driven growth and migration of epithelial cells on microstructured anisotropic substrates. Proc Natl Acad Sci U S A 104: 8281–8286.
[17]  Tranquillo RT, Girton TS, Bromberek BA, Triebes TG, Mooradian DL (1996) Magnetically orientated tissue-equivalent tubes: application to a circumferentially orientated media-equivalent. Biomaterials 17: 349–357.
[18]  Dubey N, Letourneau PC, Tranquillo RT (2001) Neuronal contact guidance in magnetically aligned fibrin gels. Biomaterials 22: 1065–1075.
[19]  Alsberg E, Feinstein E, Joy MP, Prentiss M, Ingber DE (2006) Self-assembly of fibrin matrices with ordered nano-scale structure for tissue engineering. Tissue Eng 12: 3247–3256.
[20]  Lee RC, Huang D (1998) U.S.Patent 5756350.
[21]  Powell CA, Smiley BL, Mills J, Vandenburgh HH (2002) Mechanical stimulation improves tissue-engineered human skeletal muscle. Am J Physiol Cell Physiol 283: 1557–1565.
[22]  Chen Q, Li W, Quan Z, Sumpio BE (2003) Modulation of vascular smooth muscle cell alignment by cyclic strain is dependent on reactive oxygen species and P38 mitogen-activated protein kinase J Vasc Surg 37: 660–668.
[23]  Neidlinger-Wilke C, Grood ES, Wang JH-C, Brand RA, Claes L (2001) Cell alignment is induced by cyclic changes in cell length: studies of cells grown in cyclically stretched substrates. J Orthop Res 19: 286–293.
[24]  Huang YC, Dennis RG, Larkin L, Baar K (2005) Rapid formation of functional muscle in vitro using fibrin gels. J Appl Physiol 98: 706–713.
[25]  Fischbach C, Chen R, Matsumoto T, Schmelzle T, Brugge J, et al. (2007) Engineering tumors with 3D scaffolds. Nat Methods. In press..
[26]  Webb K, Hitchcock RW, Smeal RM, Li W, Gray SD, et al. (2006) Cyclic strain increases fibroblast proliferation, matrix accumulation, and elastic modulus of fibroblast-seeded polyurethane constructs. J Biomech 39: 1136–1144.
[27]  Kim BS, Nikolovski J, Bonadio J, Mooney DJ (1999) Cyclic mechanical strain regulates the development of engineered smooth muscle tissue. Nat Biotech 17: 979–983.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133