全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
PLOS ONE  2012 

Clues to Occult Cancer in Patients with Ischemic Stroke

DOI: 10.1371/journal.pone.0044959

Full-Text   Cite this paper   Add to My Lib

Abstract:

Background We hypothesized that hidden malignancy could be detected in patients with cryptogenic stroke without active cancer when they showed the distinctive characteristics of cancer-related stroke. Methods and Findings Among 2,562 consecutive patients with acute ischemic stroke, patients with cryptogenic stroke were analyzed and categorized into two groups according to the presence of active cancer: cryptogenic stroke with active cancer (cancer-related stroke, CA-stroke) group and without active cancer (CR-stroke) group. Patients with active lung cancer without stroke were also recruited for comparison purposes (CA-control). Clinical factors, lesion patterns on diffusion-weighted MRI (DWI), and laboratory findings were analyzed among groups. A total of 348 patients with cryptogenic stroke were enrolled in this study. Among them, 71 (20.4%) patients had active cancer at the time of stroke. The D-dimer levels were significantly higher in patients with CA-stroke than those with CR-stroke or CA-control (both p<0.001). Regarding lesion patterns, patients with CA-stroke mostly had multiple lesions in multiple vascular territories, while more than 80% of patients with CR-stroke had single/multiple lesions in a single vascular territory (P<0.001). D-dimer levels (OR 1.11 per 1 μg/mL increase; 95% CI 1.06–1.15; P<0.001) and DWI lesion patterns (OR 7.13; 95% CI 3.42–14.87; P<0.001) were independently associated with CA-stroke. Workup for hidden malignancy was performed during hospitalization in 10 patients who showed elevated D-dimer levels and multiple infarcts involving multiple vascular territories but had no known cancer, and it revealed hidden malignancies in all the patients. Conclusion Patients with CA-stroke have distinctive D-dimer levels and lesion patterns. These characteristics can serve as clues to occult cancer in patients with cryptogenic stroke.

References

[1]  Graus F, Rogers LR, Posner JB (1985) Cerebrovascular complications in patients with cancer. Medicine (Baltimore) 64: 16–35.
[2]  Bang OY, Seok JM, Kim SG, Hong JM, Kim HY, et al. (2011) Ischemic stroke and cancer: stroke severely impacts cancer patients, while cancer increases the number of strokes. J Clin Neurol 7: 53–59.
[3]  Seok JM, Kim SG, Kim JW, Chung CS, Kim GM, et al. (2010) Coagulopathy and embolic signal in cancer patients with ischemic stroke. Ann Neurol 68: 213–219.
[4]  Kim SG, Hong JM, Kim HY, Lee J, Chung PW, et al. (2010) Ischemic stroke in cancer patients with and without conventional mechanisms: a multicenter study in Korea. Stroke 41: 798–801.
[5]  Greenberg E, Divertie MB, Woolner LB (1964) A Review of Unusual Systemic Manifestations Associated with Carcinoma. Am J Med 36: 106–120.
[6]  Monreal M, Lensing AW, Prins MH, Bonet M, Fernandez-Llamazares J, et al. (2004) Screening for occult cancer in patients with acute deep vein thrombosis or pulmonary embolism. J Thromb Haemost 2: 876–881.
[7]  Monreal M, Casals A, Boix J, Olazabal A, Montserrat E, et al. (1993) Occult cancer in patients with acute pulmonary embolism. A prospective study. Chest 103: 816–819.
[8]  Gore JM, Appelbaum JS, Greene HL, Dexter L, Dalen JE (1982) Occult cancer in patients with acute pulmonary embolism. Ann Intern Med 96: 556–560.
[9]  Ay H, Furie KL, Singhal A, Smith WS, Sorensen AG, et al. (2005) An evidence-based causative classification system for acute ischemic stroke. Ann Neurol 58: 688–697.
[10]  Lee AY, Levine MN, Baker RI, Bowden C, Kakkar AK, et al. (2003) Low-molecular-weight heparin versus a coumarin for the prevention of recurrent venous thromboembolism in patients with cancer. N Engl J Med 349: 146–153.
[11]  Guercini F, Acciarresi M, Agnelli G, Paciaroni M (2008) Cryptogenic stroke: time to determine aetiology. J Thromb Haemost 6: 549–554.
[12]  Kang DW, Chalela JA, Ezzeddine MA, Warach S (2003) Association of ischemic lesion patterns on early diffusion-weighted imaging with TOAST stroke subtypes. Arch Neurol 60: 1730–1734.
[13]  Baird AE, Lovblad KO, Schlaug G, Edelman RR, Warach S (2000) Multiple acute stroke syndrome: marker of embolic disease? Neurology 54: 674–678.
[14]  Hong CT, Tsai LK, Jeng JS (2009) Patterns of acute cerebral infarcts in patients with active malignancy using diffusion-weighted imaging. Cerebrovasc Dis 28: 411–416.
[15]  Fujimoto S, Toyoda K, Jinnouchi J, Yasaka M, Kitazono T, et al. (2011) Differences in diffusion-weighted image and transesophageal echocardiographical findings in cardiogenic, paradoxical and aortogenic brain embolism. Cerebrovasc Dis 32: 148–154.
[16]  Grisold W, Oberndorfer S, Struhal W (2009) Stroke and cancer: a review. Acta Neurol Scand 119: 1–16.
[17]  Kono T, Ohtsuki T, Hosomi N, Takeda I, Aoki S, et al. (2012) Cancer-associated ischemic stroke is associated with elevated d-dimer and fibrin degradation product levels in acute ischemic stroke with advanced cancer. Geriatr Gerontol Int 12: 468–474.
[18]  Tesselaar ME, Romijn FP, Van Der Linden IK, Prins FA, Bertina RM, et al. (2007) Microparticle-associated tissue factor activity: a link between cancer and thrombosis? J Thromb Haemost 5: 520–527.
[19]  Zwicker JI, Liebman HA, Neuberg D, Lacroix R, Bauer KA, et al. (2009) Tumor-derived tissue factor-bearing microparticles are associated with venous thromboembolic events in malignancy. Clin Cancer Res 15: 6830–6840.
[20]  Prandoni P, Lensing AW, Buller HR, Cogo A, Prins MH, et al. (1992) Deep-vein thrombosis and the incidence of subsequent symptomatic cancer. N Engl J Med 327: 1128–1133.
[21]  Bura A, Cailleux N, Bienvenu B, Leger P, Bissery A, et al. (2004) Incidence and prognosis of cancer associated with bilateral venous thrombosis: a prospective study of 103 patients. J Thromb Haemost 2: 441–444.
[22]  Kwon HM, Kang BS, Yoon BW (2007) Stroke as the first manifestation of concealed cancer. J Neurol Sci 258: 80–83.
[23]  Sorensen HT, Mellemkjaer L, Olsen JH, Baron JA (2000) Prognosis of cancers associated with venous thromboembolism. N Engl J Med 343: 1846–1850.
[24]  Blom JW, Osanto S, Rosendaal FR (2004) The risk of a venous thrombotic event in lung cancer patients: higher risk for adenocarcinoma than squamous cell carcinoma. J Thromb Haemost 2: 1760–1765.
[25]  Lee AY, Levine MN (2003) Venous thromboembolism and cancer: risks and outcomes. Circulation 107: I17–21.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133