Multiple sclerosis is a chronic, inflammatory, demyelinating disease of the central nervous system in which macrophages and microglia play a central role. Foamy macrophages and microglia, containing degenerated myelin, are abundantly found in active multiple sclerosis lesions. Recent studies have described an altered macrophage phenotype after myelin internalization. However, it is unclear by which mechanisms myelin affects the phenotype of macrophages and how this phenotype can influence lesion progression. Here we demonstrate, by using genome wide gene expression analysis, that myelin-phagocytosing macrophages have an enhanced expression of genes involved in migration, phagocytosis and inflammation. Interestingly, myelin internalization also induced the expression of genes involved in liver-X-receptor signaling and cholesterol efflux. In vitro validation shows that myelin-phagocytosing macrophages indeed have an increased capacity to dispose intracellular cholesterol. In addition, myelin suppresses the secretion of the pro-inflammatory mediator IL-6 by macrophages, which was mediated by activation of liver-X-receptor β. Our data show that myelin modulates the phenotype of macrophages by nuclear receptor activation, which may subsequently affect lesion progression in demyelinating diseases such as multiple sclerosis.
References
[1]
Brosnan CF, Bornstein MB, Bloom BR (1981) The effects of macrophage depletion on the clinical and pathologic expression of experimental allergic encephalomyelitis. J Immunol 126: 614–620.
[2]
Huitinga I, van Rooijen N, de Groot CJ, Uitdehaag BM, Dijkstra CD (1990) Suppression of experimental allergic encephalomyelitis in Lewis rats after elimination of macrophages. J Exp Med 172: 1025–1033.
[3]
Huitinga I, Ruuls SR, Jung S, van Rooijen N, Hartung HP, et al. (1995) Macrophages in T cell line-mediated, demyelinating, and chronic relapsing experimental autoimmune encephalomyelitis in Lewis rats. Clin Exp Immunol 100: 344–351.
[4]
Hellings N, Raus J, Stinissen P (2002) Insights into the immunopathogenesis of multiple sclerosis. Immunol Res 25: 27–51.
[5]
Vanderlocht J, Hellings N, Hendriks JJ, Stinissen P (2007) The ambivalent nature of T-cell infiltration in the central nervous system of patients with multiple sclerosis. Crit Rev Immunol 27: 1–13.
[6]
McFarland HF, Martin R (2007) Multiple sclerosis: a complicated picture of autoimmunity. Nat Immunol 8: 913–919.
[7]
Goverman J (2009) Autoimmune T cell responses in the central nervous system. Nat Rev Immunol 9: 393–407.
[8]
Barnett MH, Henderson AP, Prineas JW (2006) The macrophage in MS: just a scavenger after all? Pathology and pathogenesis of the acute MS lesion. Mult Scler 12: 121–132.
[9]
Pineau I, Lacroix S (2007) Proinflammatory cytokine synthesis in the injured mouse spinal cord: multiphasic expression pattern and identification of the cell types involved. J Comp Neurol 500: 267–285.
[10]
Piani D, Frei K, Do KQ, Cuenod M, Fontana A (1991) Murine brain macrophages induced NMDA receptor mediated neurotoxicity in vitro by secreting glutamate. Neurosci Lett 133: 159–162.
[11]
Flavin MP, Coughlin K, Ho LT (1997) Soluble macrophage factors trigger apoptosis in cultured hippocampal neurons. Neuroscience 80: 437–448.
[12]
Hendriks JJ, Teunissen CE, de Vries HE, Dijkstra CD (2005) Macrophages and neurodegeneration. Brain Res Brain Res Rev 48: 185–195.
[13]
Miller E, Mrowicka M, Zolynski K, Kedziora J (2009) [Oxidative stress in multiple sclerosis]. Pol Merkur Lekarski 27: 499–502.
[14]
Williams K, Ulvestad E, Waage A, Antel JP, McLaurin J (1994) Activation of adult human derived microglia by myelin phagocytosis in vitro. J Neurosci Res 38: 433–443.
[15]
Mosley K, Cuzner ML (1996) Receptor-mediated phagocytosis of myelin by macrophages and microglia: effect of opsonization and receptor blocking agents. Neurochem Res 21: 481–487.
[16]
van der Laan LJ, Ruuls SR, Weber KS, Lodder IJ, Dopp EA, et al. (1996) Macrophage phagocytosis of myelin in vitro determined by flow cytometry: phagocytosis is mediated by CR3 and induces production of tumor necrosis factor-alpha and nitric oxide. J Neuroimmunol 70: 145–152.
[17]
Boven LA, Van Meurs M, Van Zwam M, Wierenga-Wolf A, Hintzen RQ, et al. (2006) Myelin-laden macrophages are anti-inflammatory, consistent with foam cells in multiple sclerosis. Brain 129: 517–526.
[18]
Liu Y, Hao W, Letiembre M, Walter S, Kulanga M, et al. (2006) Suppression of microglial inflammatory activity by myelin phagocytosis: role of p47-PHOX-mediated generation of reactive oxygen species. J Neurosci 26: 12904–12913.
[19]
van Rossum D, Hilbert S, Strassenburg S, Hanisch UK, Bruck W (2008) Myelin-phagocytosing macrophages in isolated sciatic and optic nerves reveal a unique reactive phenotype. Glia 56: 271–283.
[20]
Sun X, Wang X, Chen T, Li T, Cao K, et al. (2010) Myelin activates FAK/Akt/NF-kappaB pathways and provokes CR3-dependent inflammatory response in murine system. PLoS One 5: e9380.
Zhang Z, Zhang ZY, Schittenhelm J, Wu Y, Meyermann R, et al. (2011) Parenchymal accumulation of CD163(+) macrophages/microglia in multiple sclerosis brains. J Neuroimmunol 237: 73–79. S0165–5728(11)00166–4 [pii];10.1016/j.jneuroim.2011.06.006 [doi].
[23]
Miller RH (1999) Contact with central nervous system myelin inhibits oligodendrocyte progenitor maturation. Dev Biol 216: 359–368.
[24]
Kotter MR, Zhao C, van Rooijen N, Franklin RJ (2005) Macrophage-depletion induced impairment of experimental CNS remyelination is associated with a reduced oligodendrocyte progenitor cell response and altered growth factor expression. Neurobiol Dis 18: 166–175.
[25]
Kotter MR, Li WW, Zhao C, Franklin RJ (2006) Myelin impairs CNS remyelination by inhibiting oligodendrocyte precursor cell differentiation. J Neurosci 26: 328–332.
[26]
Gredler V, Ebner S, Schanda K, Forstner M, Berger T, et al. (2010) Impact of human myelin on the maturation and function of human monocyte-derived dendritic cells. Clin Immunol 134: 296–304.
[27]
Cannella B, Raine CS (1995) The adhesion molecule and cytokine profile of multiple sclerosis lesions. Ann Neurol 37: 424–435. 10.1002/ana.410370404 [doi].
[28]
Selmaj K, Raine CS, Cannella B, Brosnan CF (1991) Identification of lymphotoxin and tumor necrosis factor in multiple sclerosis lesions. J Clin Invest 87: 949–954. 10.1172/JCI115102 [doi].
[29]
Hofman FM, Hinton DR, Johnson K, Merrill JE (1989) Tumor necrosis factor identified in multiple sclerosis brain. J Exp Med 170: 607–612.
[30]
Alberti S, Schuster G, Parini P, Feltkamp D, Diczfalusy U, et al. (2001) Hepatic cholesterol metabolism and resistance to dietary cholesterol in LXRbeta-deficient mice. J Clin Invest 107: 565–573. 10.1172/JCI9794 [doi].
[31]
Norton WT, Poduslo SE (1973) Myelination in rat brain: changes in myelin composition during brain maturation. J Neurochem 21: 759–773.
[32]
Hendriks JJ, Slaets H, Carmans S, de Vries HE, Dijkstra CD, et al. (2008) Leukemia inhibitory factor modulates production of inflammatory mediators and myelin phagocytosis by macrophages. J Neuroimmunol 204: 52–57.
[33]
Gentleman RC, Carey VJ, Bates DM, Bolstad B, Dettling M, et al. (2004) Bioconductor: open software development for computational biology and bioinformatics. Genome Biol 5: R80. gb-2004–5-10-r80 [pii];10.1186/gb-2004–5-10-r80 [doi].
[34]
Gautier L, Cope L, Bolstad BM, Irizarry RA (2004) affy–analysis of Affymetrix GeneChip data at the probe level. Bioinformatics 20: 307–315. 10.1093/bioinformatics/btg405 [doi];20/3/307 [pii].
[35]
Irizarry RA, Hobbs B, Collin F, Beazer-Barclay YD, Antonellis KJ, et al. (2003) Exploration, normalization, and summaries of high density oligonucleotide array probe level data. Biostatistics 4: 249–264. 10.1093/biostatistics/4.2.249 [doi];4/2/249 [pii].
[36]
Edgar R, Domrachev M, Lash AE (2002) Gene Expression Omnibus: NCBI gene expression and hybridization array data repository. Nucleic Acids Res 30: 207–210.
[37]
Huang dW, Sherman BT, Lempicki RA (2009) Systematic and integrative analysis of large gene lists using DAVID bioinformatics resources. Nat Protoc 4: 44–57. nprot.2008.211 [pii];10.1038/nprot.2008.211 [doi].
[38]
Vandesompele J, De PK, Pattyn F, Poppe B, Van RN, et al. (2002) Accurate normalization of real-time quantitative RT-PCR data by geometric averaging of multiple internal control genes. Genome Biol 3: RESEARCH0034.
[39]
Nelissen K, Smeets K, Mulder M, Hendriks JJ, Ameloot M (2010) Selection of reference genes for gene expression studies in rat oligodendrocytes using quantitative real time PCR. J Neurosci Methods 187: 78–83. S0165–0270(09)00683–9 [pii];10.1016/j.jneumeth.2009.12.018 [doi].
[40]
Papenfuss TL, Thrash JC, Danielson PE, Foye PE, Hllbrush BS, et al. (2007) Induction of Golli-MBP expression in CNS macrophages during acute LPS-induced CNS inflammation and experimental autoimmune encephalomyelitis (EAE). ScientificWorldJournal 7: 112–120. 10.1100/tsw.2007.251 [doi].
[41]
Oram JF, Yokoyama S (1996) Apolipoprotein-mediated removal of cellular cholesterol and phospholipids. J Lipid Res 37: 2473–2491.
[42]
Kennedy MA, Barrera GC, Nakamura K, Baldan A, Tarr P, et al. (2005) ABCG1 has a critical role in mediating cholesterol efflux to HDL and preventing cellular lipid accumulation. Cell Metab 1: 121–131.
[43]
Vaughan AM, Oram JF (2005) ABCG1 redistributes cell cholesterol to domains removable by high density lipoprotein but not by lipid-depleted apolipoproteins. J Biol Chem 280: 30150–30157.
[44]
Smith JD, Le GW, Settle M, Brubaker G, Waelde C, et al. (2004) ABCA1 mediates concurrent cholesterol and phospholipid efflux to apolipoprotein A-I. J Lipid Res 45: 635–644. 10.1194/jlr.M300336-JLR200 [doi];M300336-JLR200 [pii].
[45]
Wang N, Lan D, Chen W, Matsuura F, Tall AR (2004) ATP-binding cassette transporters G1 and G4 mediate cellular cholesterol efflux to high-density lipoproteins. Proc Natl Acad Sci U S A 101: 9774–9779. 10.1073/pnas.0403506101 [doi];0403506101 [pii].
[46]
Joseph SB, Castrillo A, Laffitte BA, Mangelsdorf DJ, Tontonoz P (2003) Reciprocal regulation of inflammation and lipid metabolism by liver X receptors. Nat Med 9: 213–219.
[47]
Castrillo A, Joseph SB, Marathe C, Mangelsdorf DJ, Tontonoz P (2003) Liver X receptor-dependent repression of matrix metalloproteinase-9 expression in macrophages. J Biol Chem 278: 10443–10449.
[48]
Ghisletti S, Huang W, Ogawa S, Pascual G, Lin ME, et al. (2007) Parallel SUMOylation-dependent pathways mediate gene- and signal-specific transrepression by LXRs and PPARgamma. Mol Cell 25: 57–70. S1097–2765(06)00816–1 [pii];10.1016/j.molcel.2006.11.022 [doi].
[49]
Ghisletti S, Huang W, Jepsen K, Benner C, Hardiman G, et al. (2009) Cooperative NCoR/SMRT interactions establish a corepressor-based strategy for integration of inflammatory and anti-inflammatory signaling pathways. Genes Dev 23: 681–693. 23/6/681 [pii];10.1101/gad.1773109 [doi].
[50]
Ogawa S, Lozach J, Benner C, Pascual G, Tangirala RK, et al. (2005) Molecular determinants of crosstalk between nuclear receptors and toll-like receptors. Cell 122: 707–721. S0092–8674(05)00648–3 [pii];10.1016/j.cell.2005.06.029 [doi].
[51]
Wu X, Bayle JH, Olson D, Levine AJ (1993) The p53-mdm-2 autoregulatory feedback loop. Genes Dev 7: 1126–1132.
[52]
Barak Y, Juven T, Haffner R, Oren M (1993) mdm2 expression is induced by wild type p53 activity. EMBO J 12: 461–468.
[53]
Espinosa JM, Emerson BM (2001) Transcriptional regulation by p53 through intrinsic DNA/chromatin binding and site-directed cofactor recruitment. Mol Cell 8: 57–69. S1097–2765(01)00283–0 [pii].
[54]
Hofmann TG, Moller A, Sirma H, Zentgraf H, Taya Y, et al. (2002) Regulation of p53 activity by its interaction with homeodomain-interacting protein kinase-2. Nat Cell Biol 4: 1–10. 10.1038/ncb715 [doi];ncb715 [pii].
[55]
D’Orazi G, Cecchinelli B, Bruno T, Manni I, Higashimoto Y, et al. (2002) Homeodomain-interacting protein kinase-2 phosphorylates p53 at Ser 46 and mediates apoptosis. Nat Cell Biol 4: 11–19. 10.1038/ncb714 [doi];ncb714 [pii].
[56]
de Vos AF, van Meurs M, Brok HP, Boven LA, Hintzen RQ, et al. (2002) Transfer of central nervous system autoantigens and presentation in secondary lymphoid organs. J Immunol 169: 5415–5423.
[57]
van Zwam M, Huizinga R, Melief MJ, Wierenga-Wolf AF, van Meurs M, et al. (2009) Brain antigens in functionally distinct antigen-presenting cell populations in cervical lymph nodes in MS and EAE. J Mol Med 87: 273–286.
[58]
Lai Y, Shen Y, Liu XH, Zhang Y, Zeng Y, et al. (2011) Interleukin-8 induces the endothelial cell migration through the activation of phosphoinositide 3-kinase-Rac1/RhoA pathway. Int J Biol Sci 7: 782–791.
[59]
Fox R, Nhan TQ, Law GL, Morris DR, Liles WC, et al. (2007) PSGL-1 and mTOR regulate translation of ROCK-1 and physiological functions of macrophages. EMBO J 26: 505–515. 7601522 [pii];10.1038/sj.emboj.7601522 [doi].
[60]
Alfaro C, Suarez N, Martinez-Forero I, Palazon A, Rouzaut A, et al. (2011) Carcinoma-derived interleukin-8 disorients dendritic cell migration without impairing T-cell stimulation. PLoS One 6: e17922. 10.1371/journal.pone.0017922 [doi].
[61]
Matsumoto T, Yokoi K, Mukaida N, Harada A, Yamashita J, et al. (1997) Pivotal role of interleukin-8 in the acute respiratory distress syndrome and cerebral reperfusion injury. J Leukoc Biol 62: 581–587.
[62]
Smythies LE, Maheshwari A, Clements R, Eckhoff D, Novak L, et al. (2006) Mucosal IL-8 and TGF-beta recruit blood monocytes: evidence for cross-talk between the lamina propria stroma and myeloid cells. J Leukoc Biol 80: 492–499. jlb.1005566 [pii];10.1189/jlb.1005566 [doi].
[63]
Sordi V, Bianchi G, Buracchi C, Mercalli A, Marchesi F, et al. (2006) Differential effects of immunosuppressive drugs on chemokine receptor CCR7 in human monocyte-derived dendritic cells: selective upregulation by rapamycin. Transplantation 82: 826–834. 10.1097/01.tp.0000235433.03554.4f [doi];00007890–200609270–00017 [pii].
[64]
Vega FM, Fruhwirth G, Ng T, Ridley AJ (2011) RhoA and RhoC have distinct roles in migration and invasion by acting through different targets. J Cell Biol 193: 655–665. jcb.201011038 [pii];10.1083/jcb.201011038 [doi].
[65]
van Zwam M, Wierenga-Wolf AF, Melief MJ, Schrijver B, Laman JD, et al. (2010) Myelin ingestion by macrophages promotes their motility and capacity to recruit myeloid cells. J Neuroimmunol 225: 112–117.
[66]
Gitik M, Reichert F, Rotshenker S (2010) Cytoskeleton plays a dual role of activation and inhibition in myelin and zymosan phagocytosis by microglia. FASEB J 24: 2211–2221. fj.09–146118 [pii];10.1096/fj.09–146118 [doi].
[67]
Ogden CA, Kowalewski R, Peng Y, Montenegro V, Elkon KB (2005) IGM is required for efficient complement mediated phagocytosis of apoptotic cells in vivo. Autoimmunity 38: 259–264.
[68]
Ogden CA, deCathelineau A, Hoffmann PR, Bratton D, Ghebrehiwet B, et al. (2001) C1q and mannose binding lectin engagement of cell surface calreticulin and CD91 initiates macropinocytosis and uptake of apoptotic cells. J Exp Med 194: 781–795.
[69]
Weinstein SL, Finn AJ, Dave SH, Meng F, Lowell CA, et al. (2000) Phosphatidylinositol 3-kinase and mTOR mediate lipopolysaccharide-stimulated nitric oxide production in macrophages via interferon-beta. J Leukoc Biol 67: 405–414.
Paterniti I, Mazzon E, Gil C, Impellizzeri D, Palomo V, et al. (2011) PDE 7 inhibitors: new potential drugs for the therapy of spinal cord injury. PLoS One 6: e15937. 10.1371/journal.pone.0015937 [doi].
[72]
Castano T, Wang H, Campillo NE, Ballester S, Gonzalez-Garcia C, et al. (2009) Synthesis, structural analysis, and biological evaluation of thioxoquinazoline derivatives as phosphodiesterase 7 inhibitors. ChemMedChem 4: 866–876. 10.1002/cmdc.200900043 [doi].
[73]
Guo RF, Riedemann NC, Ward PA (2004) Role of C5a-C5aR interaction in sepsis. Shock 21: 1–7. 10.1097/01.shk.0000105502.75189.5e [doi].
[74]
Iynedjian PB (2009) Molecular physiology of mammalian glucokinase. Cell Mol Life Sci 66: 27–42. 10.1007/s00018–008–8322–9 [doi].
[75]
Jeyakumar M, Butters TD, Dwek RA, Platt FM (2002) Glycosphingolipid lysosomal storage diseases: therapy and pathogenesis. Neuropathol Appl Neurobiol 28: 343–357. 422 [pii].
[76]
Jou I, Lee JH, Park SY, Yoon HJ, Joe EH, et al. (2006) Gangliosides trigger inflammatory responses via TLR4 in brain glia. Am J Pathol 168: 1619–1630. S0002–9440(10)62184–0 [pii];10.2353/ajpath.2006.050924 [doi].
[77]
Park EJ, Suh M, Thomson B, Ma DW, Ramanujam K, et al. (2007) Dietary ganglioside inhibits acute inflammatory signals in intestinal mucosa and blood induced by systemic inflammation of Escherichia coli lipopolysaccharide. Shock 28: 112–117. 10.1097/SHK.0b013e3180310fec [doi].
[78]
Valledor AF (2005) The innate immune response under the control of the LXR pathway. Immunobiology 210: 127–132.
[79]
Hong C, Tontonoz P (2008) Coordination of inflammation and metabolism by PPAR and LXR nuclear receptors. Curr Opin Genet Dev 18: 461–467. S0959–437X(08)00096–8 [pii];10.1016/j.gde.2008.07.016 [doi].
[80]
Bensinger SJ, Tontonoz P (2008) Integration of metabolism and inflammation by lipid-activated nuclear receptors. Nature 454: 470–477. nature07202 [pii];10.1038/nature07202 [doi].
[81]
Chawla A, Boisvert WA, Lee CH, Laffitte BA, Barak Y, et al. (2001) A PPAR gamma-LXR-ABCA1 pathway in macrophages is involved in cholesterol efflux and atherogenesis. Mol Cell 7: 161–171. S1097–2765(01)00164–2 [pii].
[82]
Zhang Y, Zhang X, Chen L, Wu J, Su D, et al. (2006) Liver X receptor agonist TO-901317 upregulates SCD1 expression in renal proximal straight tubule. Am J Physiol Renal Physiol 290: F1065-F1073. 00131.2005 [pii];10.1152/ajprenal.00131.2005 [doi].
[83]
Tall AR (2008) Cholesterol efflux pathways and other potential mechanisms involved in the athero-protective effect of high density lipoproteins. J Intern Med 263: 256–273. JIM1898 [pii];10.1111/j.1365–2796.2007.01898.x [doi].
[84]
Tabas I (2002) Consequences of cellular cholesterol accumulation: basic concepts and physiological implications. J Clin Invest 110: 905–911. 10.1172/JCI16452 [doi].
[85]
Peet DJ, Turley SD, Ma W, Janowski BA, Lobaccaro JM, et al. (1998) Cholesterol and bile acid metabolism are impaired in mice lacking the nuclear oxysterol receptor LXR alpha. Cell 93: 693–704. S0092–8674(00)81432–4 [pii].
[86]
Repa JJ, Mangelsdorf DJ (2002) The liver X receptor gene team: potential new players in atherosclerosis. Nat Med 8: 1243–1248. 10.1038/nm1102–1243 [doi];nm1102–1243 [pii].
[87]
Bjorkhem I, Meaney S (2004) Brain cholesterol: long secret life behind a barrier. Arterioscler Thromb Vasc Biol 24: 806–815.
[88]
Cui G, Qin X, Wu L, Zhang Y, Sheng X, et al. (2011) Liver X receptor (LXR) mediates negative regulation of mouse and human Th17 differentiation. J Clin Invest 121: 658–670. 42974 [pii];10.1172/JCI42974 [doi].
[89]
Xu J, Wagoner G, Douglas JC, Drew PD (2009) Liver X receptor agonist regulation of Th17 lymphocyte function in autoimmunity. J Leukoc Biol 86: 401–409. jlb.1008600 [pii];10.1189/jlb.1008600 [doi].
[90]
Hindinger C, Hinton DR, Kirwin SJ, Atkinson RD, Burnett ME, et al. (2006) Liver X receptor activation decreases the severity of experimental autoimmune encephalomyelitis. J Neurosci Res 84: 1225–1234. 10.1002/jnr.21038 [doi].
[91]
Giorelli M, Livrea P, Minervini MG, Trojano M (2007) Immunomodulatory properties of increased levels of liver X receptor beta in peripheral blood mononuclear cells from multiple sclerosis patients. Exp Neurol 204: 759–766. S0014–4886(07)00028–3 [pii];10.1016/j.expneurol.2007.01.013 [doi].
[92]
Kadl A, Meher AK, Sharma PR, Lee MY, Doran AC, et al. (2010) Identification of a novel macrophage phenotype that develops in response to atherogenic phospholipids via Nrf2. Circ Res 107: 737–746. CIRCRESAHA.109.215715 [pii];10.1161/CIRCRESAHA.109.215715 [doi].