[1] | Bergsten P (2000) Pathophysiology of impaired pulsatile insulin release. Diabetes Metab Res Rev 16: 179–191.
|
[2] | Porksen N, Hollingdal M, Juhl C, Butler P, Veldhuis JD, et al. (2002) Pulsatile insulin secretion: detection, regulation, and role in diabetes. Diabetes 51: Suppl 1S245–254.
|
[3] | Ward GM (1987) The insulin receptor concept and its relation to the treatment of diabetes. Drugs 33: 156–170.
|
[4] | Matthews DR, Naylor BA, Jones RG, Ward GM, Turner RC (1983) Pulsatile insulin has greater hypoglycemic effect than continuous delivery. Diabetes 32: 617–621.
|
[5] | Veldhuis JD, Carlson ML, Johnson ML (1987) The pituitary gland secretes in bursts: appraising the nature of glandular secretory impulses by simultaneous multiple-parameter deconvolution of plasma hormone concentrations. Proc Natl Acad Sci U S A 84: 7686–7690.
|
[6] | Paolisso G, Sgambato S, Torella R, Varricchio M, Scheen A, et al. (1988) Pulsatile insulin delivery is more efficient than continuous infusion in modulating islet cell function in normal subjects and patients with type 1 diabetes. J Clin Endocrinol Metab 66: 1220–1226.
|
[7] | Paolisso G, Sgambato S, Scheen AJ, Torella R, Lefebvre PJ (1988) [Advantages of pulsatile administration of human insulin on endogenous pancreatic secretion in the normal subject and in type 1 diabetics]. Ann Med Interne (Paris) 139: 144–145.
|
[8] | Bratusch-Marrain PR, Komjati M, Waldhausl WK (1986) Efficacy of pulsatile versus continuous insulin administration on hepatic glucose production and glucose utilization in type I diabetic humans. Diabetes 35: 922–926.
|
[9] | Zarkovic M, Ciric J, Stojanovic M, Penezic Z, Trbojevic B, et al. (1999) Effect of insulin sensitivity on pulsatile insulin secretion. Eur J Endocrinol 141: 494–501.
|
[10] | Bingley PJ, Matthews DR, Williams AJ, Bottazzo GF, Gale EA (1992) Loss of regular oscillatory insulin secretion in islet cell antibody positive non-diabetic subjects. Diabetologia 35: 32–38.
|
[11] | O'Rahilly S, Turner RC, Matthews DR (1988) Impaired pulsatile secretion of insulin in relatives of patients with non-insulin-dependent diabetes. N Engl J Med 318: 1225–1230.
|
[12] | Schmitz O, Porksen N, Nyholm B, Skjaerbaek C, Butler PC, et al. (1997) Disorderly and nonstationary insulin secretion in relatives of patients with NIDDM. Am J Physiol 272: E218–226.
|
[13] | Sherman A, Rinzel J, Keizer J (1988) Emergence of organized bursting in clusters of pancreatic beta-cells by channel sharing. Biophys J 54: 411–425.
|
[14] | Sherman A, Rinzel J (1991) Model for synchronization of pancreatic beta-cells by gap junction coupling. Biophys J 59: 547–559.
|
[15] | Smolen P, Rinzel J, Sherman A (1993) Why pancreatic islets burst but single beta cells do not. The heterogeneity hypothesis. Biophys J 64: 1668–1680.
|
[16] | Rorsman P, Renstrom E (2003) Insulin granule dynamics in pancreatic beta cells. Diabetologia 46: 1029–1045.
|
[17] | Kinard TA, de Vries G, Sherman A, Satin LS (1999) Modulation of the bursting properties of single mouse pancreatic beta-cells by artificial conductances. Biophys J 76: 1423–1435.
|
[18] | Falke LC, Gillis KD, Pressel DM, Misler S (1989) 'Perforated patch recording' allows long-term monitoring of metabolite-induced electrical activity and voltage-dependent Ca2+ currents in pancreatic islet B cells. FEBS Lett 251: 167–172.
|
[19] | Smith PA, Ashcroft FM, Rorsman P (1990) Simultaneous recordings of glucose dependent electrical activity and ATP-regulated K(+)-currents in isolated mouse pancreatic beta-cells. FEBS Lett 261: 187–190.
|
[20] | Andreu E, Soria B, Sanchez-Andres JV (1997) Oscillation of gap junction electrical coupling in the mouse pancreatic islets of Langerhans. J Physiol 498(Pt 3): 753–761.
|
[21] | Sanchez-Andres JV, Gomis A, Valdeolmillos M (1995) The electrical activity of mouse pancreatic beta-cells recorded in vivo shows glucose-dependent oscillations. J Physiol 486(Pt 1): 223–228.
|
[22] | Valdeolmillos M, Gomis A, Sanchez-Andres JV (1996) In vivo synchronous membrane potential oscillations in mouse pancreatic beta-cells: lack of co-ordination between islets. J Physiol 493(Pt 1): 9–18.
|
[23] | Nadal A, Quesada I, Soria B (1999) Homologous and heterologous asynchronicity between identified alpha-, beta- and delta-cells within intact islets of Langerhans in the mouse. J Physiol 517(Pt 1): 85–93.
|
[24] | Jonkers FC, Jonas JC, Gilon P, Henquin JC (1999) Influence of cell number on the characteristics and synchrony of Ca2+ oscillations in clusters of mouse pancreatic islet cells. J Physiol 520 Pt 3: 839–849.
|
[25] | Chay TR, Keizer J (1983) Minimal model for membrane oscillations in the pancreatic beta-cell. Biophys J 42: 181–190.
|
[26] | Chay TR, Kang HS (1988) Role of single-channel stochastic noise on bursting clusters of pancreatic beta-cells. Biophys J 54: 427–435.
|
[27] | Sherman A (1996) Contributions of modeling to understanding stimulus-secretion coupling in pancreatic beta-cells. Am J Physiol 271: E362–372.
|
[28] | Bertram R, Previte J, Sherman A, Kinard TA, Satin LS (2000) The phantom burster model for pancreatic beta-cells. Biophys J 79: 2880–2892.
|
[29] | de Vries G, Sherman A (2001) From spikers to bursters via coupling: help from heterogeneity. Bull Math Biol 63: 371–391.
|
[30] | Zimliki CL, Mears D, Sherman A (2004) Three roads to islet bursting: emergent oscillations in coupled phantom bursters. Biophys J 87: 193–206.
|
[31] | Pedersen MG, Bertram M, Sherman A (2005) Intra- and Inter-islet Synchronization of Metabolically Driven Insulin Secretion. Biophysical Journal 89: 107–119.
|
[32] | Jo J, Kang H, Choi MY, Koh DS (2005) How noise and coupling induce bursting action potentials in pancreatic {beta}-cells. Biophys J 89: 1534–1542.
|
[33] | Aguirre J, Mosekilde E, Sanjuan MA (2004) Analysis of the noise-induced bursting-spiking transition in a pancreatic beta-cell model. Phys Rev E Stat Nonlin Soft Matter Phys 69: 041910.
|
[34] | Pedersen MG (2005) A comment on noise enhanced bursting in pancreatic beta-cells. J Theor Biol 235: 1–3.
|
[35] | Brissova M, Fowler MJ, Nicholson WE, Chu A, Hirshberg B, et al. (2005) Assessment of human pancreatic islet architecture and composition by laser scanning confocal microscopy. J Histochem Cytochem 53: 1087–1097.
|
[36] | Cabrera O, Berman DM, Kenyon NS, Ricordi C, Berggren P-O, et al. (2006) The unique cytoarchitecture of human pancreatic islets has implications for islet cell function. Proc Natl Acad Sci U S A 103: 2334–2339.
|
[37] | Atwater I, Carroll P, Li MX (1989) Electrophysiology of the pancreatic beta-cell. In: Drazin B, Melmed S, LeRoith D, editors. Insulin secretion. New York: Alan R. Liss.
|
[38] | Hellman B, Gylfe E, Bergsten P, Grapengiesser E, Lund PE, et al. (1994) Glucose induces oscillatory Ca2+ signalling and insulin release in human pancreatic beta cells. Diabetologia 37: Suppl 2S11–20.
|
[39] | Gylfe E, Ahmed M, Bergsten P, Dansk H, Dyachok O, et al. (2000) Signaling underlying pulsatile insulin secretion. Ups J Med Sci 105: 35–51.
|
[40] | Mears D, Sheppard NF Jr, Atwater I, Rojas E (1995) Magnitude and modulation of pancreatic beta-cell gap junction electrical conductance in situ. J Membr Biol 146: 163–176.
|
[41] | Perez-Armendariz M, Roy C, Spray DC, Bennett MV (1991) Biophysical properties of gap junctions between freshly dispersed pairs of mouse pancreatic beta cells. Biophys J 59: 76–92.
|
[42] | Allagnat F, Martin D, Condorelli DF, Waeber G, Haefliger JA (2005) Glucose represses connexin36 in insulin-secreting cells. J Cell Sci 118: 5335–5344.
|
[43] | Ravier MA, Guldenagel M, Charollais A, Gjinovci A, Caille D, et al. (2005) Loss of connexin36 channels alters beta-cell coupling, islet synchronization of glucose-induced Ca2+ and insulin oscillations, and basal insulin release. Diabetes 54: 1798–1807.
|
[44] | Sato T, Haimovici R, Kao R, Li AF, Roy S (2002) Downregulation of connexin 43 expression by high glucose reduces gap junction activity in microvascular endothelial cells. Diabetes 51: 1565–1571.
|
[45] | Inoguchi T, Yu HY, Imamura M, Kakimoto M, Kuroki T, et al. (2001) Altered gap junction activity in cardiovascular tissues of diabetes. Med Electron Microsc 34: 86–91.
|
[46] | Rhodes CJ (2005) Type 2 diabetes-a matter of beta-cell life and death? Science 307: 380–384.
|
[47] | Nlend RN, Michon L, Bavamian S, Boucard N, Caille D, et al. (2006) Connexin36 and pancreatic beta-cell functions. Arch Physiol Biochem 112: 74–81.
|
[48] | Rocheleau JV, Remedi MS, Granada B, Head WS, Koster JC, et al. (2006) Critical role of gap junction coupled KATP channel activity for regulated insulin secretion. PLoS Biol 4: e26.
|
[49] | Le Gurun S, Martin D, Formenton A, Maechler P, Caille D, et al. (2003) Connexin-36 contributes to control function of insulin-producing cells. J Biol Chem 278: 37690–37697.
|
[50] | Foulis AK (1987) C. L. Oakley lecture (1987). The pathogenesis of beta cell destruction in type I (insulin-dependent) diabetes mellitus. J Pathol 152: 141–148.
|
[51] | Linn T, Federlin K (1991) [Does insulitis have importance in the pathogenesis of type-1 diabetes in man?]. Immun Infekt 19: 164–166.
|
[52] | Gepts W (1965) Pathologic anatomy of the pancreas in juvenile diabetes mellitus. Diabetes 14: 619–633.
|
[53] | MacGregor RR, Williams SJ, Tong PY, Kover K, Moore WV, et al. (2006) Small rat islets are superior to large islets in in vitro function and in transplantation outcomes. Am J Physiol Endocrinol Metab 290: E771–779.
|
[54] | Lehmann R, Zuellig RA, Kugelmeier P, Baenninger PB, Moritz W, et al. (2007) Superiority of small islets in human islet transplantation. Diabetes 56: 594–603.
|
[55] | Quesada I, Todorova MG, Alonso-Magdalena P, Beltra M, Carneiro EM, et al. (2006) Glucose induces opposite intracellular Ca2+ concentration oscillatory patterns in identified alpha- and beta-cells within intact human islets of Langerhans. Diabetes 55: 2463–2469.
|
[56] | Sohl G, Willecke K (2004) Gap junctions and the connexin protein family. Cardiovasc Res 62: 228–232.
|
[57] | Santos RM, Rojas E (1987) Evidence for modulation of cell-to-cell electrical coupling by cAMP in mouse islets of Langerhans. FEBS Lett 220: 342–346.
|
[58] | Bertuzzi F, Ricordi C (2007) Prediction of clinical outcome in islet allotransplantation. Diabetes Care 30: 410–417.
|
[59] | Samols E, Stagner JI (1990) Islet somatostatin–microvascular, paracrine, and pulsatile regulation. Metabolism 39: 55–60.
|
[60] | Bertram R, Satin L, Zhang M, Smolen P, Sherman A (2004) Calcium and glycolysis mediate multiple bursting modes in pancreatic islets. Biophys J 87: 3074–3087.
|
[61] | Yarimizu K, Kawano N, Ono J, Takaki R (1992) Periodicity of insulin secretion comprises multiple cycles with different duration in perfused rat islets. Diabetes Res Clin Pract 17: 27–32.
|
[62] | Stagner JI, Samols E (1985) Role of intrapancreatic ganglia in regulation of periodic insular secretions. Am J Physiol 248: E522–530.
|
[63] | Meissner HP, Schmelz H (1974) Membrane potential of beta-cells in pancreatic islets. Pflugers Arch 351: 195–206.
|
[64] | Matthews EK, Sakamoto Y (1975) Electrical characteristics of pancreatic islet cells. J Physiol 246: 421–437.
|
[65] | Atwater I, Mears D, Rojas E (1996) Electrophysiology of the pancreatic ?-cell. In: LeRoith D, Taylor SI, Olefsky JM, editors. Diabetes Mellitus, A fundamental and clinical test. Philadelphia: Lippincott-Raven.
|
[66] | MacDonald PE, Rorsman P (2006) Oscillations, intercellular coupling, and insulin secretion in pancreatic Beta cells. PLoS Biol 4: e49.
|
[67] | MacDonald PE, Joseph JW, Rorsman P (2005) Glucose-sensing mechanisms in pancreatic beta-cells. Philos Trans R Soc Lond B Biol Sci 360: 2211–2225.
|
[68] | Hodgkin AL, Huxley AF (1952) A Quantitative Description of Membrane Current and its Application to Conduction and Excitation in Nerve. Journal of physiology 117: 500–544.
|
[69] | Wierschem K, Bertram R (2004) Complex bursting in pancreatic islets: a potential glycolytic mechanism. J Theor Biol 228: 513–521.
|
[70] | De Vries G, Sherman A (2000) Channel sharing in pancreatic beta -cells revisited: enhancement of emergent bursting by noise. J Theor Biol 207: 513–530.
|
[71] | Bertram R, Smolen P, Sherman A, Mears D, Atwater I, et al. (1995) A role for calcium release-activated current (CRAC) in cholinergic modulation of electrical activity in pancreatic beta-cells. Biophys J 68: 2323–2332.
|
[72] | Rosenblum M, Pikovsky A, Kurths J, Schafer C, Tass PA (2001) Phase syncrhonization: from theory to data analysis. In: Moss F, Gielen S, editors. Handbook of Biological Physics. Amsterdam: Elsevier Science. pp. 279–321.
|
[73] | Allefeld C, Kurths J (2004) An approach to multivariate phase synchronization analysis and its application to event-related potentials. International Journal of Bifurcation and Chaos 14: 417–426.
|
[74] | Zarkovic M, Henquin JC (2004) Synchronization and entrainment of cytoplasmic Ca2+ oscillations in cell clusters prepared from single or multiple mouse pancreatic islets. Am J Physiol Endocrinol Metab 287: E340–347.
|
[75] | Schafer C, Rosenblum MG, Abel HH, Kurths J (1999) Synchronization in the human cardiorespiratory system. Phys Rev E Stat Phys Plasmas Fluids Relat Interdiscip Topics 60: 857–870.
|