全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
PLOS ONE  2007 

A Multidirectional Non-Cell Autonomous Control and a Genetic Interaction Restricting Tobacco Etch Virus Susceptibility in Arabidopsis

DOI: 10.1371/journal.pone.0000985

Full-Text   Cite this paper   Add to My Lib

Abstract:

Background Viruses constitute a major class of pathogens that infect a variety of hosts. Understanding the intricacies of signaling during host-virus interactions should aid in designing disease prevention strategies and in understanding mechanistic aspects of host and pathogen signaling machinery. Methodology/Principal Findings An Arabidopsis mutant, B149, impaired in susceptibility to Tobacco etch virus (TEV), a positive strand RNA virus of picoRNA family, was identified using a high-throughput genetic screen and a counterselection scheme. The defects include initiation of infection foci, rate of cell-to-cell movement and long distance movement. Conclusions/Significance The defect in infectivity is conferred by a recessive locus. Molecular genetic analysis and complementation analysis with three alleles of a previously published mutant lsp1 (loss of susceptibility to potyviruses) indicate a genetic interaction conferring haploinsufficiency between the B149 locus and certain alleles of lsp1 resulting in impaired host susceptibility. The pattern of restriction of TEV foci on leaves at or near the boundaries of certain cell types and leaf boundaries suggest dysregulation of a multidirectional non-cell autonomous regulatory mechanism. Understanding the nature of this multidirectional signal and the molecular genetic mechanism conferring it should potentially reveal a novel arsenal in the cellular machinery.

References

[1]  Ausubel FM (2005) Are innate immune signaling pathways in plants and animals conserved? Nat Immunol 6: 973–979.
[2]  Akira S, Uematsu S, Takeuchi O (2006) Pathogen recognition and innate immunity. Cell 124: 783–801.
[3]  Janeway CA Jr, Medzhitov R (2002) Innate immune recognition. Annu Rev Immunol 20: 197–216.
[4]  Bendahmane A, Kanyuka K, Baulcombe DC (1999) The Rx gene from potato controls separate virus resistance and cell death responses. Plant Cell 11: 781–792.
[5]  Culver JN, Dawson WO (1991) Tobacco mosaic virus elicitor coat protein genes produce a hypersensitive phenotype in transgenic Nicotiana sylvestris plants. Mol Plant-Microbe Interact 4: 458–463.
[6]  Padgett HS, Beachy RN (1993) Analysis of a tobacco mosaic virus strain capable of overcoming N gene-mediated resistance. Plant Cell 5: 577–586.
[7]  Baulcombe D (2004) RNA silencing in plants. Nature 431: 356–363.
[8]  Deleris A, Gallego-Bartolome J, Bao J, Kasschau KD, Carrington JC, et al. (2006) Hierarchical action and inhibition of plant dicer-like proteins in antiviral defense. Science 313: 68–71.
[9]  Galiana-Arnoux D, Dostert C, Schneemann A, Hoffmann JA, Imler JL (2006) Essential function in vivo for Dicer-2 in host defense against RNA viruses in Drosophila. Nat Immunol 7: 590–597.
[10]  Lecellier CH, Dunoyer P, Arar K, Lehmann-Che J, Eyquem S, et al. (2005) A cellular microRNA mediates antiviral defense in human cells. Science 308: 557–560.
[11]  Lu R, Maduro M, Li F, Li HW, Broitman-Maduro G, et al. (2005) Animal virus replication and RNAi-mediated antiviral silencing in Caenorhabditis elegans. Nature 436: 1040–1043.
[12]  Schott DH, Cureton DK, Whelan SP, Hunter CP (2005) An antiviral role for the RNA interference machinery in Caenorhabditis elegans. Proc Natl Acad Sci U S A 102: 18420–18424.
[13]  Wang XH, Aliyari R, Li WX, Li HW, Kim K, et al. (2006) RNA interference directs innate immunity against viruses in adult Drosophila. Science 312: 452–454.
[14]  Wilkins C, Dishongh R, Moore SC, Whitt MA, Chow M, et al. (2005) RNA interference is an antiviral defence mechanism in Caenorhabditis elegans. Nature 436: 1044–1047.
[15]  Allison R, Johnston RE, Dougherty GW (1986) The nucleotidesequence of the coding region of tobacco etch virus genomic RNA:Evidence for the synthesis of a single polyprotein. Virology 154: 9–20.
[16]  Carrington JC, Dougherty WG (1988) A viral cleavage site cassette: identification of amino acid sequences required for tobacco etch virus polyprotein processing. Proc Natl Acad Sci U S A 85: 3391–3395.
[17]  Carrington JC, Kasschau KD, Mahajan SK, Schaad MC (1996) Cell-to-cell and long-distance transport of viruses in plants. Plant Cell 8: 1669–1681.
[18]  Dolja VV, McBride HJ, Carrington JC (1992) Tagging of plant potyvirus replication and movement by insertion of beta-glucuronidase into the viral polyprotein. Proc Natl Acad Sci U S A 89: 10208–10212.
[19]  Mahajan SK, Chisholm ST, Whitham SA, Carrington JC (1998) Identification and characterization of a locus (RTM1) that restricts long distance movement of tobacco etch virus in Arabidopsis thaliana. Plant J 14: 177–186.
[20]  Dangl JL, Jones JD (2001) Plant pathogens and integrated defence responses to infection. Nature 411: 826–833.
[21]  Klement Z, Farkas GL, Lovrekovich L (1964) Hypersensitive reaction induced by phytopathogenic bacteria in the tobacco leaf. Phytopathol 54: 474–477.
[22]  Kasschau KD, Carrington JC (1998) A counterdefensive strategy of plant viruses: suppression of posttranscriptional gene silencing. Cell 95: 461–470.
[23]  Li H, Li WX, Ding SW (2002) Induction and suppression of RNA silencing by an animal virus. Science 296: 1319–1321.
[24]  Mourrain P, Beclin C, Elmayan T, Feuerbach F, Godon C, et al. (2000) Arabidopsis SGS2 and SGS3 genes are required for posttranscriptional gene silencing and natural virus resistance. Cell 101: 533–542.
[25]  Vance V, Vaucheret H (2001) RNA silencing in plants–defense and counterdefense. Science 292: 2277–2280.
[26]  Voinnet O, Lederer C, Baulcombe DC (2000) A viral movement protein prevents spread of the gene silencing signal in Nicotiana benthamiana. Cell 103: 157–167.
[27]  Waterhouse PM, Wang MB, Lough T (2001) Gene silencing as an adaptive defence against viruses. Nature 411: 834–842.
[28]  Chisholm ST, Mahajan SK, Whitham SA, Yamamoto ML, Carrington JC (2000) Cloning of the Arabidopsis RTM1 gene, which controls restriction of long-distance movement of tobacco etch virus. Proc Natl Acad Sci U S A 97: 489–494.
[29]  Whitham SA, Anderberg RJ, Chisholm ST, Carrington JC (2000) Arabidopsis RTM2 gene is necessary for specific restriction of tobacco etch virus and encodes an unusual small heat shock-like protein. Plant Cell 12: 569–582.
[30]  Ishikawa M, Obata F, Kumagai T, Ohno T (1991) Isolation of mutants of Arabidopsis thaliana in which accumulation of tobacco mosaic virus coat protein is reduced to low levels. Mol Gen Genet 230: 33–38.
[31]  Ohshima K, Taniyama T, Yamanaka T, Ishikawa M, Naito S (1998) Isolation of a mutant of Arabidopsis thaliana carrying two simultaneous mutations affecting tobacco mosaic virus multiplication within a single cell. Virology 243: 472–481.
[32]  Yoshii M, Yoshioka N, Ishikawa M, Naito S (1998) Isolation of an Arabidopsis thaliana mutant in which the multiplication of both cucumber mosaic virus and turnip crinkle virus is affected. J Virol 72: 8731–8737.
[33]  Yoshii M, Yoshioka N, Ishikawa M, Naito S (1998) Isolation of an Arabidopsis thaliana mutant in which accumulation of cucumber mosaic virus coat protein is delayed. Plant J 13: 211–219.
[34]  Lartey RT, Ghoshroy S, Citovsky V (1998) Identification of an Arabidopsis thaliana mutation (vsm1) that restricts systemic movement of tobamoviruses. Mol Plant Microbe Interact 11: 706–709.
[35]  Sheng J, Lartey R, Ghoshroy S, Citovsky V (1998) An Arabidopsis thaliana mutant with virus-inducible phenotype. Virology 249: 119–128.
[36]  Cockerham G (1970) Genetical studies on resistance to potato viruses X and Y. Heredity 25: 309–348.
[37]  Whitham S, Dinesh-Kumar SP, Choi D, Hehl R, Corr C, et al. (1994) The product of the tobacco mosaic virus resistance gene N: similarity to toll and the interleukin-1 receptor. Cell 78: 1101–1115.
[38]  O'Keefe DP, Tepperman JM, Dean C, Leto KJ, Erbes DL, et al. (1994) Plant expression of a bacterial cytochrome P450 that catalyzes activation of a sulfonylurea pro-Herbicide. Plant Physiol 105: 473–482.
[39]  Whitham SA, Yamamoto ML, Carrington JC (1999) Selectable viruses and altered susceptibility mutants in Arabidopsis thaliana. Proc Natl Acad Sci U S A 96: 772–777.
[40]  Lellis AD, Kasschau KD, Whitham SA, Carrington JC (2002) Loss-of-susceptibility mutants of Arabidopsis thaliana reveal an essential role for eIF(iso)4E during potyvirus infection. Curr Biol 12: 1046–1051.
[41]  Wittmann S, Chatel H, Fortin MG, Laliberte JF (1997) Interaction of the viral protein genome linked of turnip mosaic potyvirus with the translational eukaryotic initiation factor (iso) 4E of Arabidopsis thaliana using the yeast two-hybrid system. Virology 234: 84–92.
[42]  Schaad MC, Anderberg RJ, Carrington JC (2000) Strain-specific interaction of the tobacco etch virus NIa protein with the translation initiation factor eIF4E in the yeast two-hybrid system. Virology 273: 300–306.
[43]  Leonard S, Plante D, Wittmann S, Daigneault N, Fortin MG, et al. (2000) Complex formation between potyvirus VPg and translation eukaryotic initiation factor 4E correlates with virus infectivity. J Virol 74: 7730–7737.
[44]  Duprat A, Caranta C, Revers F, Menand B, Browning KS, et al. (2002) The Arabidopsis eukaryotic initiation factor (iso)4E is dispensable for plant growth but required for susceptibility to potyviruses. Plant J 32: 927–934.
[45]  Browning KS (1996) The plant translational apparatus. Plant Mol Biol 32: 107–144.
[46]  Ruud KA, Kuhlow C, Goss DJ, Browning KS (1998) Identification and characterization of a novel cap-binding protein from Arabidopsis thaliana. J Biol Chem 273: 10325–10330.
[47]  Fire A, Xu S, Montgomery MK, Kostas SA, Driver SE, et al. (1998) Potent and specific genetic interference by double-stranded RNA in Caenorhabditis elegans. Nature 391: 806–811.
[48]  Palauqui J-C, Vaucheret H (1998) Transgenes are dispensable for the RNA degradation step of cosuppression. Proc Natl Acad Sci U S A 95: 9675–9680.
[49]  Voinnet O, Baulcombe DC (1997) Systemic signalling in gene silencing. Nature 389: 553–553.
[50]  Winston WM, Molodowitch C, Hunter CP (2002) Systemic RNAi in C. elegans requires the putative transmembrane protein SID-1. Science 295: 2456–2459.
[51]  Lucas WJ, Lee J-Y (2004) Plasmodesmata as a supracellular control network in plants. Nature Rev Mol Cell Biol 5: 712–726.
[52]  Ashe HL, Briscoe J (2006) The interpretation of morphogen gradients. Development 133: 385–394.
[53]  Lander AD (2007) Morpheus Unbound: reimagining the morphogen gradient. Cell 128: 245–256.
[54]  Li L, Xie T (2005) STEM CELL NICHE: structure and function. Annual Rev Cell Dev Biol 21: 605–631.
[55]  Moore KA, Lemischka IR (2006) Stem cells and their niches. Science 311: 1880–1885.
[56]  Vernoux TB, Benfey PN (2005) Signals that regulate stem cell activity during plant development Current Opinion in Genetics&Development 15: 388–394.
[57]  Jefferson R (1987) Assaying chimeric genes in plants: the GUS gene fusion system. Plant Mol Biol Rep 5: 387–405.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133