全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
PLOS ONE  2007 

Antiviral Oseltamivir Is not Removed or Degraded in Normal Sewage Water Treatment: Implications for Development of Resistance by Influenza A Virus

DOI: 10.1371/journal.pone.0000986

Full-Text   Cite this paper   Add to My Lib

Abstract:

Oseltamivir is the main antiviral for treatment and prevention of pandemic influenza. The increase in oseltamivir resistance reported recently has therefore sparked a debate on how to use oseltamivir in non pandemic influenza and the risks associated with wide spread use during a pandemic. Several questions have been asked about the fate of oseltamivir in the sewage treatment plants and in the environment. We have assessed the fate of oseltamivir and discuss the implications of environmental residues of oseltamivir regarding the occurrence of resistance. A series of batch experiments that simulated normal sewage treatment with oseltamivir present was conducted and the UV-spectra of oseltamivir were recorded. Findings: Our experiments show that the active moiety of oseltamivir is not removed in normal sewage water treatments and is not degraded substantially by UV light radiation, and that the active substance is released in waste water leaving the plant. Our conclusion is that a ubiquitous use of oseltamivir may result in selection pressures in the environment that favor development of drug-resistance.

References

[1]  Olsen B, Munster VJ, Wallensten A, Waldenstrom J, Osterhaus ADME, et al. (2006) Global Patterns of Influenza A Virus in Wild Birds. Science 312: 384–388.
[2]  Webster RG, Bean WJ, Gorman OT, Chambers TM, Kawaoka Y (1992) Evolution and Ecology of Influenza-A Viruses. Microbiol. Rev. 56: 152–179.
[3]  Oxford JS (2000) Influenza A pandemics of the 20th century with special reference to 1918: virology, pathology and epidemiology. Rev Med Vir 10: 119–133.
[4]  Sweetman SC, editor. (2007) Martindale: The Complete Drug Reference. London: Pharmaceutical Press. Electronic version, (Edition 070214),.
[5]  Gubareva LV, Kaiser L, Hayden FG (2000) Influenza virus neuraminidase inhibitors Lancet 355: 827–835.
[6]  WHO (2005) Influenza antiviral medicinal products for potential use during a pandemic. WHO Drug Information. 19. : 273–285.
[7]  Lindberg RH, Olofsson U, Rendahl P, Johansson MI, Tysklind M, Andersson BAV (2006) Behaviour of Fluoroquinolones and Trimethoprim during Mechanical, Chemical and Active Sludge Treatment of Sewage Water and Digestion of Sludge Environ Sci Technol 40: 1042–8.
[8]  Lindberg RH, Wennberg P, Johansson MI, Tysklind M, Andersson BAV (2005) Screening of human antibiotic substances and determination of weekly mass flows in five sewage treatment plants in Sweden Environ Sci Technol 39: 3421–9.
[9]  Ternes TA, Herrmann N, Bonerz M, Knacker T, Siegrist H, Joss AA (2004) A rapid method to measure the solid-water distribution coefficient (Kd) for pharmaceuticals and musk fragrances in sewage sludge Water Res 38: 4075–84.
[10]  Wiltshire H, Wiltshire B, Citron A, Clarke T, Serpe C, et al. (2000) Development of a high-performance liquid chromatographic-mass spectrometric assay for the specific and sensitive quantification of Ro 64-0802, an anti.influenza drug, an dits pro-drug, oseltamivir, in human and animal plasma and urine J. Chromatogr. B 745: 373–388.
[11]  Monto AS, McKimm-Breschkin J, Macken C, Hampson AW, Hay A, et al. (2006) Detection of Influenza Viruses Resistant to Neuraminidase Inhibitors in Global Surveillance during the First 3 years of Their Use Antimicrob. Agents Chemother 50: 2395–2402.
[12]  F.Hoffmann-La Roche Ltd. Further expansion of Tamiflu manufacturing capacity (2005) (accesessed February 14, 2007, at http://www.roche.com/med-cor-2005-10-18).
[13]  Gubareva LV, Webster RG, Hayden FG (2001) Comparison of the Activities of Zanamivir, Oseltamivir, and RWJ-270201 against Clinical Isolates of Influenza Virus and Neuraminidase Inhibitor-Resistant Variants Antimicrob Agents Chemother 45: 3403–8.
[14]  Singer AC, Miles AN, Gould EA, Johnson AC (2007) Potential Risks Associated with the Proposed Widespread Use of Tamiflu Env Health Persp 115: 102–6.
[15]  Moscona A (2005) Oseltamavir Resistance-Disabling Our Influenza Defenses. N Engl J Med 353: 2633–6.
[16]  Kiso M, Mitamura K, Sakai-Tagawa Y, Shiraishi K, Kawakami C, et al. (2004) Resistant influenza A viruses in children treated with oseltamivir: descriptive study Lancet 364: 759–765.
[17]  Boreen AL, Arnold WA, McNeill K (2003) Photodegradation of pharmaceuticals in the aquatic environment: A review Aqua Sci 65: 320–341.
[18]  Stallknecht DE, Shane SM (1988) Host range of avian influenza virus in free-living birds Vet Res Comm 12: 125–141.
[19]  Stallknecht DE, Shane SM, Kearney MT, Zwank PJ (1990) Persistence of Avian Influenza-Viruses in Water Avian Dis 34: 406–411.
[20]  Stallknecht DE, Kearney MT, Shane SM, Zwank PJ (1990) Effects of pH, temperature, and salinity on persistence of avian influenza viruses in water. Avian Dis 34: 412–418.
[21]  Webster RG, Yakhno M, Hinshaw VS, Bean WJ, Murti KG (1978) Intestinal influenza: replication and characterization of influenza viruses in ducks Virology 84: 268–278.
[22]  FAO/OIE/WHO (2005) Consultation on avian influenza and human health: risk reduction measures in producing, marketing and living with animals in Asia. Rome: FAO.
[23]  Hatakeyama S, Sugaya N, Ito M, Yamazaki M, Ichikawa M, et al. (2007) Emergence of Influenza B Viruses with Reduced Sensitivity to Neuraminidase Inhibitors JAMA 297: 1435–42.
[24]  McKimm-Breschkin J, Trivedi T, Hampson A, Hay A, Klimov A, et al. (2003) Neuraminidase sequence analysis and susceptibilities of influenza virus clinical isolates to zanamivir and oseltamivir. Antimicrob Agents Chemotherv 47: 2264–72.
[25]  Chutinimitkul S, Suwannakarn K, Chieochansin T, Mai LQ, Damrongwatanapokin S, et al. (2007) H5N1 Oseltamivir-resistance detection by real-time PCR using two high sensitivity labeled TaqMan probes J Vir Meth 139: 44–49.
[26]  Carr J, Ives J, Kelly L, Lambkin R, Oxford J, et al. (2002) Influenza virus carrying neuramindase with reduced sensitivity to oseltamivir carboxylate has altered properties in vitro and is compromised for infectivity and replicative ability in vivo Antiviral Res 54: 79–88.
[27]  Herlocher ML, Truscon R, Elias S, Yen HL, Roberts NA, et al. (2004) Influenza Viruses Resistant to the Antiviral Drug Oseltamivir: Transmission Studies in Ferrets J Inf Dis 190: 1627–30.
[28]  Moscona A, McKimm-Breschkin J (2007) News About Influenza B Drug Resistance That Cannot Be Ignored. JAMA 297: 1492–3.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133