全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
PLOS ONE  2007 

Direct Detection of Soil-Bound Prions

DOI: 10.1371/journal.pone.0001069

Full-Text   Cite this paper   Add to My Lib

Abstract:

Scrapie and chronic wasting disease are contagious prion diseases affecting sheep and cervids, respectively. Studies have indicated that horizontal transmission is important in sustaining these epidemics, and that environmental contamination plays an important role in this. In the perspective of detecting prions in soil samples from the field by more direct methods than animal-based bioassays, we have developed a novel immuno-based approach that visualises in situ the major component (PrPSc) of prions sorbed onto agricultural soil particles. Importantly, the protocol needs no extraction of the protein from soil. Using a cell-based assay of infectivity, we also report that samples of agricultural soil, or quartz sand, acquire prion infectivity after exposure to whole brain homogenates from prion-infected mice. Our data provide further support to the notion that prion-exposed soils retain infectivity, as recently determined in Syrian hamsters intracerebrally or orally challanged with contaminated soils. The cell approach of the potential infectivity of contaminated soil is faster and cheaper than classical animal-based bioassays. Although it suffers from limitations, e.g. it can currently test only a few mouse prion strains, the cell model can nevertheless be applied in its present form to understand how soil composition influences infectivity, and to test prion-inactivating procedures.

References

[1]  Prusiner SB (1998) Prions. Proc Natl Acad Sci U S A 95: 13363–13383.
[2]  Collinge J (1999) Variant Creutzfeldt-Jakob disease. Lancet 354: 317–323.
[3]  Belay ED, Maddox RA, Williams ES, Miller MW, Gambetti P, et al. (2004) Chronic wasting disease and potential transmission to humans. Emerg Infect Dis 10: 977–984.
[4]  Sigurdson CJ, Aguzzi A (2007) Chronic wasting disease. Biochim Biophys Acta 1772: 610–618.
[5]  Mawhinney S, Pape WJ, Forster JE, Anderson CA, Bosque P, et al. (2006) Human prion disease and relative risk associated with chronic wasting disease. Emerg Infect Dis 10: 1527–1535.
[6]  Hoinville LJ (1996) A review of the epidemiology of scrapie in sheep. Rev Sci Tech 15: 827–852.
[7]  Miller MW, Williams ES (2003) Prion disease: horizontal prion transmission in mule deer. Nature 425: 35–36.
[8]  Ryder S, Dexter G, Bellworthy S, Tongue S (2004) Demonstration of lateral transmission of scrapie between sheep kept under natural conditions using lymphoid tissue biopsy. Res Vet Sci 76: 211–217.
[9]  Palsson PA (1979) Rida (scrapie) in Iceland and its epidemiology. In: Prusiner SB, Hadlow WJ, editors. Slow transmissible diseases of the nervous system. New York: Academic Press. pp. 357–366.
[10]  Fries GF (1996) Ingestion of sludge applied organic chemicals by animals. Sci Total Environ 185: 93–108.
[11]  Hui CA (2004) Geophagy and potential contaminant exposure for terrestrial vertebrates. Rev Environ Contam Toxicol 183: 115–134.
[12]  Miller MW, Williams ES, Hobbs NT, Wolfe LL (2004) Environmental sources of prion transmission in mule deer. Emerg Infect Dis 10: 1003–1006.
[13]  Seeger H, Heikenwalder M, Zeller N, Kranich J, Schwarz P, et al. (2005) Coincident scrapie infection and nephritis lead to urinary prion excretion. Science 310: 324–326.
[14]  Mathiason CK, Powers JG, Dahmes SJ, Osborn DA, Miller KV, et al. (2006) Infectious prions in the saliva and blood of deer with chronic wasting disease. Science 314: 133–136.
[15]  Revault M, Quiquampoix H, Baron MH, Noinville S (2005) Fate of prions in soil: trapped conformation of full-length ovine prion protein induced by adsorption on clays. Biochim Biophys Acta 1724: 367–374.
[16]  Rigou P, Rezaei H, Grosclaude J, Staunton S, Quiquampoix H (2006) Fate of prions in soil: adsorption and extraction by electroelution of recombinant ovine prion protein from montmorillonite and natural soils. Environ Sci Technol 40: 1497–1503.
[17]  Vasina EN, Dejardin P, Rezaei H, Grosclaude J, Quiquampoix H (2005) Fate of prions in soil: adsorption kinetics of recombinant unglycosylated ovine prion protein onto mica in laminar flow conditions and subsequent desorption. Biomacromolecules 6: 3425–3432.
[18]  Cooke CM, Shaw G (2007) Fate of prions in soil: Longevity and migration of recPrP in soil columns. Soil Biol Biochem 39: 1181–1191.
[19]  Rao MA, Russo F, Granata V, Berisio R, Zagari A, et al. (2007) Fate of prions in soil: Interaction of a recombinant ovine prion protein with synthetic humic-like mineral complexes. Soil Biol Biochem 39: 493–504.
[20]  Leita L, Fornasier F, De Nobili M, Bertoli A, Genovesi S, et al. (2006) Interactions of prion proteins with soil. Soil Biol Biochem 38: 1638–1644.
[21]  Johnson CJ, Phillips KE, Schramm PT, McKenzie D, Aiken JM, et al. (2006) Prions adhere to soil minerals and remain infectious. PLoS Pathog 2: e32.
[22]  Cooke CM, Rodger J, Smith A, Fernie K, Shaw G, et al. (2007) Fate of prions in soil: detergent extraction of PrP from soils. Environ Sci Technol 41: 811–817.
[23]  Ma X, Benson CH, McKenzie D, Aiken JM, Pedersen JA (2007) Adsorption of pathogenic prion protein to quartz sand. Environ Sci Technol 41: 2324–2330.
[24]  Seidel B, Thomzig A, Buschmann A, Groschup MH, Peters R, et al. (2007) Scrapie agent strain 263K) can transmit disease via the oral route after persistence in soil over years. PLoS ONE 2: e435.
[25]  Brown P, Gajdusek DC (1991) Survival of scrapie virus after 3 years' interment. Lancet 337: 269–270.
[26]  Johnson CJ, Pedersen JA, Chappell RJ, McKenzie D, Aiken JM (2007) Oral transmissibility of prion disease is enhanced by binding to soil particles. PLoS Pathog 3: e93.
[27]  Flechsig E, Hegyi I, Enari M, Schwarz P, Collinge J, et al. (2001) Transmission of scrapie by steel-surface-bound prions. Mol Med 7: 679–684.
[28]  Caughey B, Raymond GJ (1993) Sulfated polyanion inhibition of scrapie-associated PrP accumulation in cultured cells. J Virol 67: 643–650.
[29]  Weissmann C, Enari M, Kl?hn PC, Rossi D, Flechsig E (2002) Transmission of prions. Proc Natl Acad Sci U S A 99: 16378–16383.
[30]  Kl?hn PC, Stoltze L, Flechsig E, Enari M, Weissmann C (2003) A quantitative, highly sensitive cell-based infectivity assay for mouse scrapie prions. Proc Natl Acad Sci U S A 100: 11666–11671.
[31]  Wolf DC, Scott HD, Lavy TL, Dao TH (1989) Influence of sterilization methods on selected soil microbiological, physical, and chemical properties. J Environ Qual 18: 39–44.
[32]  Shaw LJ, Beaton Y, Glover LA, Killham K, Meharg AA (1999) Re-inoculation of autoclaved soil as a non-sterile treatment for xenobiotic sorption and biodegradation studies. Appl Soil Ecol 11: 217–226.
[33]  Connan H, Ray A, Thomas P, Guerbois J-P (2007) Effect of autoclaving temperature on calcium silicate-based building containing clay-brick waste. J Therm Anal Calorim 88: 115–119.
[34]  Chung HH, Choi SW, Ok YS, Jung J (2004) EPR characterization of the catalytic activity of clays for PCE removal by gamma-radiation induced by acid and thermal treatments. Chemosphere 57: 1383–1387.
[35]  Aguzzi A, Heikenwalder M (2006) Pathogenesis of prion diseases: current status and future outlook. Nat Rev Microbiol 4: 765–775.
[36]  Brown P (1998) BSE: the final resting place. Lancet 351: 1146–1147.
[37]  Hadlow WJ, Kennedy RC, Race RE (1982) Natural infection of Suffolk sheep with scrapie virus. J Infect Dis 146: 657–664.
[38]  Sigurdson CJ, Williams ES, Miller MW, Spraker TR, O'Rourke KI, et al. (1999) Oral transmission and early lymphoid tropism of chronic wasting disease PrPres in mule deer fawns (Odocoileus hemionus). J Gen Virol 80: 2757–2764.
[39]  Aringhieri R, Giachetti M (2001) Effect of sodium adsorption ratio and electrolyte concentrations on the saturated hydraulic conductivity of clay–sand mixtures. Eur J of Soil Sci 52: 449–458.
[40]  Carter DL, Mortland MM, Kemper WD (1986) Specific surface. In: Klute A, Page AL, editors. Methods of soil analysis, part 1. Physical and mineralogical methods. 2nd ed. Madison, Wis.: American Society of Agronomy: Soil Science Society of America. pp. 413–423.
[41]  Brini M, Miuzzo M, Pierobon N, Negro A, Sorgato MC (2005) The prion protein and its paralogue Doppel affect calcium signaling in Chinese hamster ovary cells. Mol Biol Cell 16: 2799–2808.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133