[1] | Ross IL, Browne CM, Hume DA (1994) Transcription of individual genes in eukaryotic cells occurs randomly and infrequently. Cell Biology 72: 177–185.
|
[2] | Walters MC, Fiering S, Eidemiller J, Magis W, Groudine M, et al. (1995) Enhancers increase the probability but not the level of gene expression. Proc Natl Acad Sci (USA) 92: 7125–7129.
|
[3] | McAdams HH, Arkin A (1997) Stochastic mechanisms in gene expression. Proc Natl Acad Sci (USA) 94: 814.
|
[4] | Hume DA (2000) Probability in transcriptional regulation and its implications for leukocyte differentiation and inducible gene expression. Blood 96: 2323–8.
|
[5] | Hasty J, Pradines J, Dolnik M, Collins JJ (2000) Noise-based switches and amplifiers for gene expression. Proc Natl Acad Sci (USA) 97: 2075–2080.
|
[6] | Levin MD (2003) Noise in gene expression as the source of non-genetic individuality in the chemotactic response of Escherichia coli. FEBS Letters 550: 135–138.
|
[7] | Pedraza JM, van Oudenaarden A (2005) Noise propagation in gene networks. Science 307: 1965.
|
[8] | Elowitz MB, Levine AJ, Siggia ED, Swain PS (2002) Stochastic gene expression in a single cell. Science 297: 1183.
|
[9] | Swain PS, Elowitz MB, Siggia ED (2002) Intrinsic and extrinsic contributions to stochasticity in gene expression. Proc Natl Acad Sci (USA) 99: 12795.
|
[10] | Raser JM, O'Shea EK (2004) Control of stochasticity in eukaryotic gene expression. Science 304: 1811.
|
[11] | Berg H, Purcell E (1977) Physics of chemoreception. Biophys J 20: 193–219.
|
[12] | Bialek W, Setayeshgar S (2005) Physical limits to biochemical signaling. Proc Natl Acad Sci (USA) 102: 10040–10045.
|
[13] | Shannon C, Weaver W (1949) The Mathematical Theory of Communication. Urbana, Illinois: University of Illinois Press.
|
[14] | Kauffman S (1969) Metabolic stability and epigenesis in randomly constructed genetic nets. J Theor Biol 22: 437–467.
|
[15] | Guet CC, Elowitz MB, Hsing W, Leibler S (2002) Combinatorial synthesis of genetic networks. Science 296: 1466.
|
[16] | Li F, Lu Y, Long T, Ouyang Q, Tang C (2004) The yeast cell-cycle network is robustly designed. PNAS 101: 4781.
|
[17] | Albert R (2004) Boolean modeling of genetic regulatory networks. In: Ben-Naim E, Frauenfelder H, Toroczkai Z, editors. Complex Networks. Springer Verlag.
|
[18] | Davidson E (2006) The Regulatory Genome: Gene Regulatory Networks in Development and Evolution. San Diego: Academic Press/Elsevier.
|
[19] | Bialek W (2000) Stability and noise in biochemical switches. Proc Natl Acad Sci (USA) 102: 10040–1004.
|
[20] | Tkacik G, Callan CG Jr, Bialek W (2000) Information flow and optimization in transcriptional regulation. arXiv:0705.0313 [q-bio.MN].
|
[21] | Lahav G, Rosenfeld N, Sigal A, Geva-Zatorsky N, Levine AJ, et al. (2004) Dyanmics of the p53-Mdm2 feedback loop in individual cells. Nat Gen 36: 147–150.
|
[22] | Ma L, Wagner J, Rice JJ, Hu W, Levine AJ, et al. (2005) A plausible model for the digital response of p53 to dna damage. Proc Natl Acad Sci (USA) 102: 14266–14271.
|
[23] | Vogelstein B, Lane D, Levine AJ (2000) Surfing the p53 network. Nature 408: 307–310.
|
[24] | Knudson AG (1971) Mutation and cancer: statistical study of retinoblastoma. Proc Natl Acad Sci (USA) 68: 820.
|
[25] | Fodde R, Smits R (2002) A matter of dosage. Science 298: 761–3.
|
[26] | Hohenstein P (2004) Tumour suppressor genes-one hit can be enough. PLoS Biology 2: 0165–66.
|
[27] | Ghosh B, Bose I (2006) Gene copy number and cell cycle arrest. Physical Biology 3: 29–36.
|
[28] | Madhani HD, Fink GR (1998) The riddle of MAP kinase signaling specificity. Trends Genet 14: 151–155.
|
[29] | Garcia JA (2006) Hifing the brakes: Therapeutic opportunities for treatment of human malignancies. Sci STKE 337: 25.
|
[30] | Brunner D, Ducker K, Oellers N, Hafen E, Scholzi H, et al. (1994) The ETS domain protein Pointed-P2 is a target of MAP kinase in the Sevenless signal transduction pathway. Nature 370: 386–389.
|
[31] | Madhani HD, Fink GR (1997) Combinatorial control required for the specificity of yeast MAPK signaling. Science 275: 1314–1317.
|
[32] | Sabbagh W Jr, Flatauer LJ, Bardwell AJ, Bardwell L (2001) Specificity of MAP kinase signaling in yeast differentiation involves transient versus sustained MAPK activation. Molecular Cell 8: 683–691.
|
[33] | Schwartz MA, Madhani HD (2004) Principles of MAP kinase signaling specificity in Saccharomyces cerevisiae. Annu. Rev. Genet 38: 725–748.
|
[34] | Marshall CJ (1995) Specificity of receptor tyrosine kinase signaling: transient versus sustained extracellular signal-regulated kinase activation. Cell 80: 179–185.
|
[35] | Schlessinger J, Bar-Sagi D (1994) Activation of Ras and other signaling pathways by receptor tyrosine kinases. Cold Spring Harb Symp Quant Biol 59: 173.
|
[36] | Schneidman E, Freedman B, Segev I (1998) Ion channel stochasticity may be critical in determining the reliability and precision of spike timing. Neural Computation 10: 1679–1703.
|
[37] | Alon U, Surette MG, Barkai N, Leibler S (1999) Robustness in bacterial chemotaxis. Nature 397: 168–171.
|
[38] | Elowitz MB, Leibler S (2000) A synthetic oscillatory network of transcriptional regulators. Nature 403: 335.
|
[39] | Becskei A, Serrano L (2000) Engineering stability in gene networks by autoregulation. Nature 405: 590.
|
[40] | Vilar JMG, Kueh HY, Baarkai N, Leibler S (2002) Mechanisms of noise-resistance in genetic oscillators. Proc Natl Acad Sci (USA) 99: 5988–5992.
|
[41] | Shen-Orr S, Milo R, Mangan S, Alon U (2002) Network motifs in the transcriptional regulation network of Escherichia coli. Nat Gen 31: 64–68.
|
[42] | Korobkova E, Emonet T, Vilar JMG, Shimizu TS, Cluzel P (2004) Robustness in bacterial chemotaxis. Nature 428: 574.
|
[43] | Kollmann M, Ovdok L, Bartholome K, Timmer J, Sourjik V (2005) Design principles of a bacterial signalling network. Nature 438: 504.
|
[44] | Wagner A (2005) Circuit topology and the evolution of robustness in two-gene circadian oscillators. Proc Natl Acad Sci (USA) 102:
|
[45] | Wall ME, Dunlop MJ, Hlavacek WS (2004) Multiple functions of a feed-forward loop gene circuit. J Mol Biol 349: 501–514.
|
[46] | Voigt CA, Wolf DM, Arkin AP (2005) The bacillus subtilis sin operon: An evolvable network motif. Genetics 169: 1187.
|
[47] | Ingram PJ, Stumpf MPH, Stark J (2006) Network motifs: Structure does not determine function. BMC Genomics 7: 108.
|
[48] | Laughlin S (1981) A simple coding procedure enhances a neuron's information capacity. Z Naturf C36: 910–912.
|
[49] | Brenner N, Bialek W, de Ruyter van Steveninck R (2000) Adaptive rescaling optimizes information transmission. Neuron 26: 695.
|
[50] | Paulsson J (2004) Summing up the noise in gene networks. Nature 427: 415.
|
[51] | Markevich NI, Hock JB, Kholodenko BN (1996) Ultrasensitivity in the mitogen-activated protein kinase cascade. Proc Natl Acad Sci (USA) 93: 10078.
|
[52] | Cluzel P, Surette M, Leibler S (2000) An ultrasensitive bacterial motor revealed by monitoring signaling proteins in single cells. Science 287: 1652.
|
[53] | Huang C-YF, Ferrel JE Jr (2004) Signaling switches and bistability arising from multisite phosphorylation in protein kinase cascades. J Cell Biol 164: 354.
|
[54] | Paliwal S, Iglesias PA, Campbell K, Hilioti Z, Groisman A, et al. (2007) Mapk-mediated bimodal gene expression and adaptive gradient sensing in yeast. Nature 446: 46.
|
[55] | Detwiler PB, Ramanathan S, Sengupta A, Shraiman BI (2000) Engineering aspects of enzymatic signal transduction: Photoreceptors in the retina. Biophys J 79: 2801–2817.
|
[56] | Treves A, Panzeri S (1995) The upward bias in measures of information derived from limited data samples. Neural Comp 7: 399.
|
[57] | Strong SP, Koberle R, de Ruter van Steveninck RR, Bialek W (1998) Entropy and information in neural spike trains. Phys Rev Lett 80: 197.
|
[58] | Wilcoxon F (1945) Individual comparisons by ranking methods. Biometrics Bull 1: 80–83.
|
[59] | Mann HB, Whitney DR (1947) On a test of whether one of 2 random variables is stochastically larger than the other. Ann Math Sci 18: 50–60.
|
[60] | Friedman N, Cai L, Xie XS (2006) Linking stochastic dynamics to population distribution: An analytical framework of gene expression. Phys Rev Lett 97: 168302.
|
[61] | Gleiss PM, Stadler PF, Wagner A (2000) Small cycles in small worlds. arXiv:cond-mat/0009124.
|
[62] | Salgado H, Gama-Castro S, Peralta-Gil M, Diaz-Peredo E, Sanchez-Solano F, et al. (2006) Regulondb (version 5.5): Escherichia coli K-12 transcriptional regulatory network, operon organization, and growth conditions. Nucl Acids Res 34: D394–7.
|
[63] | Raj A, Peskin CS, Tranchina D, Vargas DY, Tyagi S (2006) Stochastic mRNA synthesis in mammalian cells. PloS Biology 4: 1707.
|
[64] | Rawlings ND, Morton FR, Barrett AJ (2006) MEROPS: the peptidase database. Nucl Acids Res 34: D270–2.
|
[65] | Rosenfeld N, Elowitz MB, Alon U (2002) Negative autoregulation speeds the response times of transcription networks. J Mol Biol 323: 785–793.
|
[66] | Gardner TS, Cantor CR, Collins JJ (2000) Construction of a genetic toggle switch in escherichia coli. Nature 403: 339.
|
[67] | Hasty J, McMillen D, Isaacs F, Collins JJ (2001) Computational studies of gene regulatory networks: In numero molecular biology. Nat Rev Gen 2: 268–79.
|
[68] | Wigler M, Mishra B (2002) Wild by nature. Science 296: 1407.
|
[69] | van Kampen NG (1992) Stochastic Processes in Physics and Chemistry. Amsterdam: North-Holland.
|
[70] | Elf J, Paulsson J, Berg OG, Ehrenberg M (2003) Near-critical phenomena in intracellular metabolite pools. Biophys J 84: 154.
|
[71] | Elf J, Ehrenberg M (2003) Fast evaluations of fluctuations in biochemical networks with the linear noise approximation. Genome Res 13: 2475.
|
[72] | Gillespie DT (1977) Exact stochastic simulation of coupled chemical reactions. J Phys Chem 81: 2340.
|
[73] | Gibson M, Bruck J (2000) Efficient exact stochastic simulation of chemical systems with many species and many channels. J Phys Chem 104: 1876.
|
[74] | Sinitsyn NA, Nemenman I (2007) Berry phase and pump effect in stochastic chemical kinetics. EPL 77: 58001.
|
[75] | Rao CV, Arkin AP (2003) Stochastic chemical kinetics and the quasi-steady-state assumption: Application to the Gillespie algorithm. J Chem Phys 118: 4999.
|
[76] | Bundschuh R, Hayot F, Jayaprakash C (2003) Fluctuations and slow variables in genetic networks. Biophys J 84: 1606.
|
[77] | E W, Liu D, Vanden-Eijnden E (2005) Nested stochastic simulation algorithm for chemical kinetic systems with disparate rates. J Chem Phys 123: 194107.
|
[78] | Ball K, Kurtz TG, Popovic L, Rempala G (2005) Asymptotic analysis of multiscale approximations to reaction networks. arXiv:math.PR/0508015.
|
[79] | Min W, Gopich IV, English BP, Kou SC, Xie XS, et al. (2006) When does the Michaelis-Menten equation hold for fluctuating enzymes. J Phys Chem B Lett 110: 20093.
|
[80] | Samoilov MS, Plyasunov S, Arkin AP (2005) Stochastic amplification and signaling in enzymatic futile cycles through noise-induced bistability with oscillations. PNAS 102: 2310.
|
[81] | El-Samad H, Khammash M (2006) Regulated degradation is a mechanism for suppressing stochastic fluctuations in gene regulatory networks. Biophys J 90: 3749–3761.
|
[82] | Thattai M, van Oudernaarden A (2001) Intrinsic noise in gene regulatory networks. Proc Natl Acad Sci (USA) 98: 8614.
|