全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
PLOS ONE  2012 

Elevated Urine Heparanase Levels Are Associated with Proteinuria and Decreased Renal Allograft Function

DOI: 10.1371/journal.pone.0044076

Full-Text   Cite this paper   Add to My Lib

Abstract:

Heparanase is an endo-β-glucuronidase that cleaves heparan sulfate side chains, leading to structural modifications that loosen the extracellular matrix barrier and associated with tumor metastasis, inflammation and angiogenesis. In addition, the highly sulfated heparan sulfate proteoglycans are important constituents of the glomerular basement membrane and its permselective properties. Recent studies suggest a role for heparanase in several experimental and human glomerular diseases associated with proteinuria such as diabetes, minimal change disease, and membranous nephropathy. Here, we quantified blood and urine heparanase levels in renal transplant recipients and patients with chronic kidney disease (CKD), and assessed whether alterations in heparanase levels correlate with proteinuria and renal function. We report that in transplanted patients, urinary heparanase was markedly elevated, inversely associated with estimated glomerular filtration rate (eGFR), suggesting a relationship between heparanase and graft function. In CKD patients, urinary heparanase was markedly elevated and associated with proteinuria, but not with eGFR. In addition, urinary heparanase correlated significantly with plasma heparanase in transplanted patients. Such a systemic spread of heparanase may lead to damage of cells and tissues alongside the kidney.The newly described association between heparanase, proteinuria and decreased renal function is expected to pave the way for new therapeutic options aimed at attenuating chronic renal allograft nephropathy, leading to improved graft survival and patient outcome.

References

[1]  Raats CJ, Van Den Born J, Berden JH (2000) Glomerular heparan sulfate alterations: mechanisms and relevance for proteinuria. Kidney Int 57: 385–400.
[2]  Bjornson Granqvist A, Ebefors K, Saleem MA, Mathieson PW, Haraldsson B, et al. (2006) Podocyte proteoglycan synthesis is involved in the development of nephrotic syndrome. Am J Physiol Renal Physiol 291: F722–730.
[3]  Kanwar YS, Danesh FR, Chugh SS (2007) Contribution of proteoglycans towards the integrated functions of renal glomerular capillaries: a historical perspective. Am J Pathol 171: 9–13.
[4]  Szymczak M, Kuzniar J, Klinger M (2010) The role of heparanase in diseases of the glomeruli. Arch Immunol Ther Exp (Warsz) 58: 45–56.
[5]  van den Hoven MJ, Rops AL, Vlodavsky I, Levidiotis V, Berden JH, et al. (2007) Heparanase in glomerular diseases. Kidney Int 72: 543–548.
[6]  Kanwar YS, Linker A, Farquhar MG (1980) Increased permeability of the glomerular basement membrane to ferritin after removal of glycosaminoglycans (heparan sulfate) by enzyme digestion. J Cell Biol 86: 688–693.
[7]  Raats CJ, Luca ME, Bakker MA, Van Der Wal A, Heeringa P, et al. (1999) Reduction in glomerular heparan sulfate correlates with complement deposition and albuminuria in active Heymann nephritis. J Am Soc Nephrol 10: 1689–1699.
[8]  Rops AL, van der Vlag J, Lensen JF, Wijnhoven TJ, van den Heuvel LP, et al. (2004) Heparan sulfate proteoglycans in glomerular inflammation. Kidney Int 65: 768–785.
[9]  van den Born J, van den Heuvel LP, Bakker MA, Veerkamp JH, Assmann KJ, et al. (1993) Distribution of GBM heparan sulfate proteoglycan core protein and side chains in human glomerular diseases. Kidney Int 43: 454–463.
[10]  van den Born J, van den Heuvel LP, Bakker MA, Veerkamp JH, Assmann KJ, et al. (1992) A monoclonal antibody against GBM heparan sulfate induces an acute selective proteinuria in rats. Kidney Int 41: 115–123.
[11]  Holt RC, Webb NJ, Ralph S, Davies J, Short CD, et al. (2005) Heparanase activity is dysregulated in children with steroid-sensitive nephrotic syndrome. Kidney Int 67: 122–129.
[12]  Katz A, Van-Dijk DJ, Aingorn H, Erman A, Davies M, et al. (2002) Involvement of human heparanase in the pathogenesis of diabetic nephropathy. Isr Med Assoc J 4: 996–1002.
[13]  Levidiotis V, Freeman C, Tikellis C, Cooper ME, Power DA (2004) Heparanase is involved in the pathogenesis of proteinuria as a result of glomerulonephritis. J Am Soc Nephrol 15: 68–78.
[14]  Levidiotis V, Kanellis J, Ierino FL, Power DA (2001) Increased expression of heparanase in puromycin aminonucleoside nephrosis. Kidney Int 60: 1287–1296.
[15]  van den Hoven MJ, Rops AL, Bakker MA, Aten J, Rutjes N, et al. (2006) Increased expression of heparanase in overt diabetic nephropathy. Kidney Int 70: 2100–2108.
[16]  Wijnhoven TJ, van den Hoven MJ, Ding H, van Kuppevelt TH, van der Vlag J, et al. (2008) Heparanase induces a differential loss of heparan sulphate domains in overt diabetic nephropathy. Diabetologia 51: 372–382.
[17]  Barash U, Cohen-Kaplan V, Dowek I, Sanderson RD, Ilan N, et al. (2010) Proteoglycans in health and disease: new concepts for heparanase function in tumor progression and metastasis. FEBS J 277: 3890–3903.
[18]  Levy-Adam F, Ilan N, Vlodavsky I (2010) Tumorigenic and adhesive properties of heparanase. Semin Cancer Biol 20: 153–160.
[19]  Vlodavsky I, Ilan N, Naggi A, Casu B (2007) Heparanase: structure, biological functions, and inhibition by heparin-derived mimetics of heparan sulfate. Curr Pharm Des 13: 2057–2073.
[20]  Vreys V, David G (2007) Mammalian heparanase: what is the message? J Cell Mol Med 11: 427–452.
[21]  Levidiotis V, Freeman C, Punler M, Martinello P, Creese B, et al. (2004) A synthetic heparanase inhibitor reduces proteinuria in passive Heymann nephritis. J Am Soc Nephrol 15: 2882–2892.
[22]  Levidiotis V, Freeman C, Tikellis C, Cooper ME, Power DA (2005) Heparanase inhibition reduces proteinuria in a model of accelerated anti-glomerular basement membrane antibody disease. Nephrology (Carlton) 10: 167–173.
[23]  Kramer A, van den Hoven M, Rops A, Wijnhoven T, van den Heuvel L, et al. (2006) Induction of glomerular heparanase expression in rats with adriamycin nephropathy is regulated by reactive oxygen species and the renin-angiotensin system. J Am Soc Nephrol 17: 2513–2520.
[24]  Zcharia E, Metzger S, Chajek-ShaulL T, Aingorn H, Elikn M, et al. (2004) Transgenic expression of mammalian heparanase uncovers physiological functions of heparan sulfate in tissue morphogenesis, vascularization, and feeding behavior. FASEB J 18: 252–263.
[25]  Shafat I, Pode D, Peretz T, Ilan N, Vlodavsky I, et al. (2008) Clinical significance of urine heparanase in bladder cancer progression. Neoplasia 10: 125–130.
[26]  Levey AS, Bosch JP, Lewis JB, Greene T, Rogers N, et al. (1999) A more accurate method to estimate glomerular filtration rate from serum creatinine: a new prediction equation. Modification of Diet in Renal Disease Study Group. Ann Intern Med 130: 461–470.
[27]  Shafat I, Ben-Barak A, Postovsky S, Elhasid R, Ilan N, et al. (2007) Heparanase levels are elevated in the plasma of pediatric cancer patients and correlate with response to anticancer treatment. Neoplasia 9: 909–916.
[28]  Shafat I, Zcharia E, Nisman B, Nadir Y, Nakhoul F, et al. (2006) An ELISA method for the detection and quantification of human heparanase. Biochem Biophys Res Commun 341: 958–963.
[29]  Massy ZA, Guijarro C, Wiederkehr MR, Ma JZ, Kasiske BL (1996) Chronic renal allograft rejection: immunologic and nonimmunologic risk factors. Kidney Int 49: 518–524.
[30]  Najafian B, Kasiske BL (2008) Chronic allograft nephropathy. Curr Opin Nephrol Hypertens 17: 149–155.
[31]  Shafat I, Ilan N, Zoabi S, Vlodavsky I, Nakhoul F (2011) Heparanase levels are elevated in the urine and plasma of type 2 diabetes patients and associate with blood glucose levels. PLoS One 6: e17312.
[32]  Amer H, Cosio FG (2009) Significance and management of proteinuria in kidney transplant recipients. J Am Soc Nephrol 20: 2490–2492.
[33]  Amer H, Fidler ME, Myslak M, Morales P, Kremers WK, et al. (2007) Proteinuria after kidney transplantation, relationship to allograft histology and survival. Am J Transplant 7: 2748–2756.
[34]  Baker AB, Groothuis A, Jonas M, Ettenson DS, Shazly T, et al. (2009) Heparanase alters arterial structure, mechanics, and repair following endovascular stenting in mice. Circ Res 104: 380–387.
[35]  Myler HA, Lipke EA, Rice EE, West JL (2006) Novel heparanase-inhibiting antibody reduces neointima formation. J Biochem (Tokyo) 139: 339–345.
[36]  Nadir Y, Brenner B, Fux L, Shafat I, Attias J, et al. (2010) Heparanase enhances factor Xa generation in the presence of tissue-factor and factor VIIa. Haematologica 95: 1927–1934.
[37]  Nadir Y, Brenner B, Gingis-Velitski S, Levy-Adam F, Ilan N, et al. (2008) Heparanase induces tissue factor pathway inhibitor expression and extracellular accumulation in endothelial and tumor cells. Thromb Haemost 99: 133–141.
[38]  Nadir Y, Brenner B, Zetser A, Ilan N, Shafat I, et al. (2006) Heparanase induces tissue factor expression in vascular endothelial and cancer cells. J Thromb Haemost 4: 2443–2451.
[39]  Maxhimer JB, Somenek M, Rao G, Pesce CE, Baldwin D Jr, et al. (2005) Heparanase-1 gene expression and regulation by high glucose in renal epithelial cells: a potential role in the pathogenesis of proteinuria in diabetic patients. Diabetes 54: 2172–2178.
[40]  Wang F, Wang Y, Kim MS, Puthanveetil P, Ghosh S, et al. (2010) Glucose-induced endothelial heparanase secretion requires cortical and stress actin reorganization. Cardiovasc Res 87: 127–136.
[41]  Shafat I, Vlodavsky I, Ilan N (2006) Characterization of mechanisms involved in secretion of active heparanase. J Biol Chem 281: 23804–23811.
[42]  Vlodavsky I, Eldor A, Haimovitz-Friedman A, Matzner Y, Ishai-Michaeli R, et al. (1992) Expression of heparanase by platelets and circulating cells of the immune system: possible involvement in diapedesis and extravasation. Invasion Metastasis 12: 112–127.
[43]  Yilmaz MI, Stenvinkel P, Sonmez A, Saglam M, Yaman H, et al. (2011) Vascular health, systemic inflammation and progressive reduction in kidney function; clinical determinants and impact on cardiovascular outcomes. Nephrol Dial Transplant In Press.
[44]  Lewis KD, Robinson WA, Millward MJ, Powell A, Price TJ, et al. (2008) A phase II study of the heparanase inhibitor PI-88 in patients with advanced melanoma. Invest New Drugs 26: 89–94.
[45]  Wijnhoven TJ, Lensen JF, Rops AL, McCarthy KJ, van der Vlag J, et al. (2007) Anti-proteinuric effects of glycosaminoglycan-based drugs. Curr Opin Mol Ther 9: 364–377.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133