全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
PLOS ONE  2012 

Energetics of Ortho-7 (Oxime Drug) Translocation through the Active-Site Gorge of Tabun Conjugated Acetylcholinesterase

DOI: 10.1371/journal.pone.0040188

Full-Text   Cite this paper   Add to My Lib

Abstract:

Oxime drugs translocate through the 20 ? active-site gorge of acetylcholinesterase in order to liberate the enzyme from organophosphorus compounds’ (such as tabun) conjugation. Here we report bidirectional steered molecular dynamics simulations of oxime drug (Ortho-7) translocation through the gorge of tabun intoxicated enzyme, in which time dependent external forces accelerate the translocation event. The simulations reveal the participation of drug-enzyme hydrogen bonding, hydrophobic interactions and water bridges between them. Employing nonequilibrium theorems that recovers the free energy from irreversible work done, we reconstruct potential of mean force along the translocation pathway such that the desired quantity represents an unperturbed system. The potential locates the binding sites and barriers for the drug to translocate inside the gorge. Configurational entropic contribution of the protein-drug binding entity and the role of solvent translational mobility in the binding energetics is further assessed.

References

[1]  Voet D, Voet J (2005) Biochemistry 3rd edition Wiley.
[2]  Quinn DM (1987) Acetylcholinesterase: enzyme structure, reaction dynamics, and virtual transition states. Chem Rev 87: 955–979.
[3]  Bar-On P, Millard CB, Harel M, Dvir H, Enz A, et al. (2002) Kinetic and structural studies on the interaction of cholinesterases with the anti-alzheimer drug rivastigmine. Biochemsitry 41: 3555–3564.; Wlodek ST, Clark TW, Scott LR, McCammon JA (1997) Molecular dynamics of acetylcholinesterase dimer complexed with tacrine. J Am Chem Soc 119: 9513–9522.
[4]  Hallak M, Giacobini E (1989) Physostigmine, tacrine and metrifonate: The effect of multiple doses on acetylcholine metabolism in rat brain. Neuropharmacol 28: 199–206.
[5]  Kaur J, Zhang MQ (2000) Molecular modelling and QSAR of reversible acetylcholines-terase inhibitors. Curr Med Chem 7: 273–294.
[6]  Casida JE, Quistad GB (2004) Organophosphate toxicology: safety aspects of nonacetylcholinesterase secondary targets. Chem Res Toxicol 17: 983–998.
[7]  Wiener SW, Hoffman RS (2004) Nerve agents: A comprehensive review. J Intens Care Med 19: 22–37.
[8]  Kraut J (1977) Serine proteases: Structure and mechanism of catalysis. Annu Rev Biochem 46: 331–358.
[9]  Ekstr?m F, Pang Y-P, Boman M, Artursson E, Akfur C, et al. (2006) Crystal structures of acetylcholinesterase in complex with HI-6, Ortho-7 and obidoxime: Structural basis for differences in the ability to reactivate tabun conjugates. Biochem Pharma 72: 597–607.
[10]  Ekstr?m FJ, ?stot C, Pang Y-P (2007) Novel nerve-agent antidote design based on crystallographic and mass spectrometric analyses of tabun-conjugated acetylcholinesterase in complex with antidotes. Clin Pharma Therap 82: 282–293.
[11]  Artursson E, Akfur C, H?rnberg A, Worek F, Ekstr?m F (2009) Reactivation of tabun-hAChE investigated by structurally analogous oximes and mutagenesis. Toxicology 265: 108–114.
[12]  Worek F, Aurbek N, Koller M, Becker C, Eyer P, et al. (2007) Kinetic analysis of reactivation and aging of human acetylcholinesterase inhibited by different phosphoramidates. Biochem Pharmacol 73: 1807–1817.
[13]  Aurbek N, Herkert NM, Koller M, Thiermann H, Worek F (2010) Kinetic analysis of interactions of different sarin and tabun analogues with human acetylcholinesterase and oximes: Is there a structure–activity relationship?. Chem-Biol Inter 187: 215–219.
[14]  Pang Y-P, Kollmeyer TM, Hong F, Lee J-C, Hammond PI, et al. (2003) Rational design of alkylene-linked bis-pyridiniumaldoximes as improved acetylcholinesterase reactivators. Chem & Biol 10: 491–502.
[15]  Kesharwani MK, Ganguly B, Das A, Bandyopadhyay T (2010) Differential binding of bispyridinium oxime drugs with acetylcholinesterase. Acta Pharma Sinicia 31: 313–328.
[16]  Adams PR (1981) Acetylcholine receptor kinetics. J Membr Biol 58: 161–174.
[17]  Grosman C, Auerbach A (2001) The dissociation of acetylcholine from open nicotinic receptor channels. Proc Natl Acad Sc (USA) 98: 14102–14107.
[18]  Xu Y, Shen J, Luo X, Silman I, Sussman JL, et al. (2003) How does huperzine A enter and leave the binding gorge of acetylcholinesterase? Steered molecular dynamics simulations. J Am Chem Soc 125: 11340–11349.
[19]  Niu C, Xu Y, Xu Y, Luo X, Duan W, et al. (2005) Dynamic mechanism of E2020 binding to acetylcholinesterase: A steered molecular dynamics simulation. J Phys Chem B 109: 23730–23738.
[20]  Branduardi D, Gervasio FL, Cavalli A, Recanatini M, Parrinello M (2005) The role of the peripheral anionic site and cation-π interactions in the ligand penetration of the human AChE gorge. J Am Chem Soc 127: 9147–9155.
[21]  Bui JM, Henchman RH, McCammon JA (2003) The dynamics of ligand barrier crossing inside the acetylcholinesterase gorge. Biophys J 85: 2267–2272.
[22]  Minh DDL, Adib AB (2008) Optimized free energies from bidirectional single-molecule force spectroscopy. Phys Rev Lett 100: 180602.
[23]  Nicolini P, Procacci P, Chelli R (2010) Hummer and Szabo-like potential of mean force estimator for bidirectional nonequilibrium pulling experiments/simulations. J Phys Chem B 114: 9546–9554.
[24]  Kosztin I, Barz B, Janosi L (2006) Calculating potentials of mean force and diffusion coefficients from nonequilibrium processes without Jarzynski’s equality. J Chem Phys 124: 064106.
[25]  Jarzynski C (1997) Nonequilibrium equality for free energy differences. Phys Rev Lett 78: 2690–2693.
[26]  Crooks G E (1999) Entropy production fluctuation theorem and the nonequilibrium work relation for free energy differences. Phys Rev E 60: 2721–2726.
[27]  Hummer G, Szabo A (2001) Free energy reconstruction from nonequilibrium single-molecule pulling experiments. Proc Natl Acad Sc (USA) 98: 3658–3661.
[28]  Hummer G, Szabo A (2005) Free energy surfaces from single-molecule force spectroscopy. Acc Chem Res 38: 504–513.
[29]  Bennett CH (1976) Efficient estimation of free energy differences from Monte Carlo data. J Comput Phys 22: 245–268.
[30]  Lindahl E, Hess B, van der Spoel D (2001) GROMACS 3.0: a package for molecular simulation and trajectory analysis. J Mol Model 7: 306–317.
[31]  van Gunsteren WF, Billeter S, Eising AA, Hünenberge PH, Krüger P, et al. (1996) Biomolecular simulation: The GROMOS96 Manual and User Guide. Zürich: Vdf Hochschulverlag AG an der ETH Zürich.
[32]  Frisch MJ, Trucks GW, Schlegel HB (2004) Gaussian 03 Revision E.01 Gaussian Inc. Wallingford CT.
[33]  Schuettelkopf AW, van Aalten DMF (2004) PRODRG - a tool for high-throughput crystallography of protein-ligand complexes. Acta Crystallographica D 60: 1355–1363. Prodrg website. Accessed 2009 December 7.
[34]  Berendsen HJC, Postma JPM, Gunsteren WF van, DiNola A, Haak JR (1984) Molecular dynamics with coupling to an external bath. J Chem Phys 81: 3684–3690.
[35]  Darden T, York D, Pedersen L (1993) Particle mesh Ewald: An N log(N) method for Ewald sums in large systems. Chem Phys 98: 10089–10092.
[36]  Park S, Khalili-Araghi F, Tajkhorshid E, Schulten K (2003) Free energy calculation from steered molecular dynamics simulations using Jarzynski’s equality. J. Chem. Phys. 119: 3559–3566.
[37]  Park S, Schulten K (2004) Calculating potentials of mean force from steered molecular dynamics simulations. J. Chem. Phys. 120: 5946–5961.
[38]  Lexa KW, Carlson HA (2011) Full protein flexibility is essential for proper hot-spot mapping. J. Am. Chem. Soc. 133: 200–202.
[39]  Ferrenberg AM, Swendsen RH (1989) Optimized Monte Carlo data analysis. Phys Rev Lett 63: 1195–1198.
[40]  Chelli R, Procacci P (2009) A potential of mean force estimator based on nonequilibrium work exponential averages. Phys Chem Chem Phys 11: 1152–1158.
[41]  Tai K, Shen T, B?rjesson Ulf, Philippopoulos M, McCammon JA (2001) Analysis of a 10-ns molecular dynamics simulation of mouse acetylcholinesterase. Biophys J 81: 715–724.
[42]  Heymann B, Grubmüller H (2001) Molecular dynamics force probe simulations of antibody/antigen unbinding: Entropic control and nonadditivity of unbinding forces. Biophys J 81: 1295–1313.
[43]  Karplus M, Kushick JN (1981) Method for estimating the configurational entropy of macromolecules. Macromol 14: 325–332.
[44]  Chang Chia-en A, Chen W, Gilson MK (2007) Ligand configurational entropy and protein binding. Proc Natl Acad Sc (USA) 104: 1534–1542.
[45]  Andricioaei I, Karplus M (2001) On the calculation of entropy from covariance matrices of the atomic fluctuations. J Chem Phys 115: 6289–6292.
[46]  Schlitter J (1993) Estimation of absolute and relative entropies of macromolecules using the covariance matrix. Chem Phys Lett 215: 617–621.
[47]  Tarek M, Tobias DJ (2002) Role of protein-water hydrogen bond dynamics in the protein dynamical transition. Phys Rev Lett 88: 138101.
[48]  Bolhuis PG, Chandler D, Dellago C, Geissler PL (2002) Transition path sampling: Throwing ropes over mountain passes, in the dark. Ann. Rev. Phys. Chem. 53, 291–318.
[49]  Ward JM, Gorenstein NM, Tian J, Martin SF, Post CB (2010) Constraining binding hot spots: NMR and molecular dynamics simulations provide a structural explanation for enthalpy-entropy compensation in SH2-ligand binding. J Am Chem Soc. 132: 11058–11070.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133