[1] | Voet D, Voet J (2005) Biochemistry 3rd edition Wiley.
|
[2] | Quinn DM (1987) Acetylcholinesterase: enzyme structure, reaction dynamics, and virtual transition states. Chem Rev 87: 955–979.
|
[3] | Bar-On P, Millard CB, Harel M, Dvir H, Enz A, et al. (2002) Kinetic and structural studies on the interaction of cholinesterases with the anti-alzheimer drug rivastigmine. Biochemsitry 41: 3555–3564.; Wlodek ST, Clark TW, Scott LR, McCammon JA (1997) Molecular dynamics of acetylcholinesterase dimer complexed with tacrine. J Am Chem Soc 119: 9513–9522.
|
[4] | Hallak M, Giacobini E (1989) Physostigmine, tacrine and metrifonate: The effect of multiple doses on acetylcholine metabolism in rat brain. Neuropharmacol 28: 199–206.
|
[5] | Kaur J, Zhang MQ (2000) Molecular modelling and QSAR of reversible acetylcholines-terase inhibitors. Curr Med Chem 7: 273–294.
|
[6] | Casida JE, Quistad GB (2004) Organophosphate toxicology: safety aspects of nonacetylcholinesterase secondary targets. Chem Res Toxicol 17: 983–998.
|
[7] | Wiener SW, Hoffman RS (2004) Nerve agents: A comprehensive review. J Intens Care Med 19: 22–37.
|
[8] | Kraut J (1977) Serine proteases: Structure and mechanism of catalysis. Annu Rev Biochem 46: 331–358.
|
[9] | Ekstr?m F, Pang Y-P, Boman M, Artursson E, Akfur C, et al. (2006) Crystal structures of acetylcholinesterase in complex with HI-6, Ortho-7 and obidoxime: Structural basis for differences in the ability to reactivate tabun conjugates. Biochem Pharma 72: 597–607.
|
[10] | Ekstr?m FJ, ?stot C, Pang Y-P (2007) Novel nerve-agent antidote design based on crystallographic and mass spectrometric analyses of tabun-conjugated acetylcholinesterase in complex with antidotes. Clin Pharma Therap 82: 282–293.
|
[11] | Artursson E, Akfur C, H?rnberg A, Worek F, Ekstr?m F (2009) Reactivation of tabun-hAChE investigated by structurally analogous oximes and mutagenesis. Toxicology 265: 108–114.
|
[12] | Worek F, Aurbek N, Koller M, Becker C, Eyer P, et al. (2007) Kinetic analysis of reactivation and aging of human acetylcholinesterase inhibited by different phosphoramidates. Biochem Pharmacol 73: 1807–1817.
|
[13] | Aurbek N, Herkert NM, Koller M, Thiermann H, Worek F (2010) Kinetic analysis of interactions of different sarin and tabun analogues with human acetylcholinesterase and oximes: Is there a structure–activity relationship?. Chem-Biol Inter 187: 215–219.
|
[14] | Pang Y-P, Kollmeyer TM, Hong F, Lee J-C, Hammond PI, et al. (2003) Rational design of alkylene-linked bis-pyridiniumaldoximes as improved acetylcholinesterase reactivators. Chem & Biol 10: 491–502.
|
[15] | Kesharwani MK, Ganguly B, Das A, Bandyopadhyay T (2010) Differential binding of bispyridinium oxime drugs with acetylcholinesterase. Acta Pharma Sinicia 31: 313–328.
|
[16] | Adams PR (1981) Acetylcholine receptor kinetics. J Membr Biol 58: 161–174.
|
[17] | Grosman C, Auerbach A (2001) The dissociation of acetylcholine from open nicotinic receptor channels. Proc Natl Acad Sc (USA) 98: 14102–14107.
|
[18] | Xu Y, Shen J, Luo X, Silman I, Sussman JL, et al. (2003) How does huperzine A enter and leave the binding gorge of acetylcholinesterase? Steered molecular dynamics simulations. J Am Chem Soc 125: 11340–11349.
|
[19] | Niu C, Xu Y, Xu Y, Luo X, Duan W, et al. (2005) Dynamic mechanism of E2020 binding to acetylcholinesterase: A steered molecular dynamics simulation. J Phys Chem B 109: 23730–23738.
|
[20] | Branduardi D, Gervasio FL, Cavalli A, Recanatini M, Parrinello M (2005) The role of the peripheral anionic site and cation-π interactions in the ligand penetration of the human AChE gorge. J Am Chem Soc 127: 9147–9155.
|
[21] | Bui JM, Henchman RH, McCammon JA (2003) The dynamics of ligand barrier crossing inside the acetylcholinesterase gorge. Biophys J 85: 2267–2272.
|
[22] | Minh DDL, Adib AB (2008) Optimized free energies from bidirectional single-molecule force spectroscopy. Phys Rev Lett 100: 180602.
|
[23] | Nicolini P, Procacci P, Chelli R (2010) Hummer and Szabo-like potential of mean force estimator for bidirectional nonequilibrium pulling experiments/simulations. J Phys Chem B 114: 9546–9554.
|
[24] | Kosztin I, Barz B, Janosi L (2006) Calculating potentials of mean force and diffusion coefficients from nonequilibrium processes without Jarzynski’s equality. J Chem Phys 124: 064106.
|
[25] | Jarzynski C (1997) Nonequilibrium equality for free energy differences. Phys Rev Lett 78: 2690–2693.
|
[26] | Crooks G E (1999) Entropy production fluctuation theorem and the nonequilibrium work relation for free energy differences. Phys Rev E 60: 2721–2726.
|
[27] | Hummer G, Szabo A (2001) Free energy reconstruction from nonequilibrium single-molecule pulling experiments. Proc Natl Acad Sc (USA) 98: 3658–3661.
|
[28] | Hummer G, Szabo A (2005) Free energy surfaces from single-molecule force spectroscopy. Acc Chem Res 38: 504–513.
|
[29] | Bennett CH (1976) Efficient estimation of free energy differences from Monte Carlo data. J Comput Phys 22: 245–268.
|
[30] | Lindahl E, Hess B, van der Spoel D (2001) GROMACS 3.0: a package for molecular simulation and trajectory analysis. J Mol Model 7: 306–317.
|
[31] | van Gunsteren WF, Billeter S, Eising AA, Hünenberge PH, Krüger P, et al. (1996) Biomolecular simulation: The GROMOS96 Manual and User Guide. Zürich: Vdf Hochschulverlag AG an der ETH Zürich.
|
[32] | Frisch MJ, Trucks GW, Schlegel HB (2004) Gaussian 03 Revision E.01 Gaussian Inc. Wallingford CT.
|
[33] | Schuettelkopf AW, van Aalten DMF (2004) PRODRG - a tool for high-throughput crystallography of protein-ligand complexes. Acta Crystallographica D 60: 1355–1363. Prodrg website. Accessed 2009 December 7.
|
[34] | Berendsen HJC, Postma JPM, Gunsteren WF van, DiNola A, Haak JR (1984) Molecular dynamics with coupling to an external bath. J Chem Phys 81: 3684–3690.
|
[35] | Darden T, York D, Pedersen L (1993) Particle mesh Ewald: An N log(N) method for Ewald sums in large systems. Chem Phys 98: 10089–10092.
|
[36] | Park S, Khalili-Araghi F, Tajkhorshid E, Schulten K (2003) Free energy calculation from steered molecular dynamics simulations using Jarzynski’s equality. J. Chem. Phys. 119: 3559–3566.
|
[37] | Park S, Schulten K (2004) Calculating potentials of mean force from steered molecular dynamics simulations. J. Chem. Phys. 120: 5946–5961.
|
[38] | Lexa KW, Carlson HA (2011) Full protein flexibility is essential for proper hot-spot mapping. J. Am. Chem. Soc. 133: 200–202.
|
[39] | Ferrenberg AM, Swendsen RH (1989) Optimized Monte Carlo data analysis. Phys Rev Lett 63: 1195–1198.
|
[40] | Chelli R, Procacci P (2009) A potential of mean force estimator based on nonequilibrium work exponential averages. Phys Chem Chem Phys 11: 1152–1158.
|
[41] | Tai K, Shen T, B?rjesson Ulf, Philippopoulos M, McCammon JA (2001) Analysis of a 10-ns molecular dynamics simulation of mouse acetylcholinesterase. Biophys J 81: 715–724.
|
[42] | Heymann B, Grubmüller H (2001) Molecular dynamics force probe simulations of antibody/antigen unbinding: Entropic control and nonadditivity of unbinding forces. Biophys J 81: 1295–1313.
|
[43] | Karplus M, Kushick JN (1981) Method for estimating the configurational entropy of macromolecules. Macromol 14: 325–332.
|
[44] | Chang Chia-en A, Chen W, Gilson MK (2007) Ligand configurational entropy and protein binding. Proc Natl Acad Sc (USA) 104: 1534–1542.
|
[45] | Andricioaei I, Karplus M (2001) On the calculation of entropy from covariance matrices of the atomic fluctuations. J Chem Phys 115: 6289–6292.
|
[46] | Schlitter J (1993) Estimation of absolute and relative entropies of macromolecules using the covariance matrix. Chem Phys Lett 215: 617–621.
|
[47] | Tarek M, Tobias DJ (2002) Role of protein-water hydrogen bond dynamics in the protein dynamical transition. Phys Rev Lett 88: 138101.
|
[48] | Bolhuis PG, Chandler D, Dellago C, Geissler PL (2002) Transition path sampling: Throwing ropes over mountain passes, in the dark. Ann. Rev. Phys. Chem. 53, 291–318.
|
[49] | Ward JM, Gorenstein NM, Tian J, Martin SF, Post CB (2010) Constraining binding hot spots: NMR and molecular dynamics simulations provide a structural explanation for enthalpy-entropy compensation in SH2-ligand binding. J Am Chem Soc. 132: 11058–11070.
|