全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
PLOS ONE  2012 

Comparative Transcriptome Analyses of Deltamethrin-Resistant and -Susceptible Anopheles gambiae Mosquitoes from Kenya by RNA-Seq

DOI: 10.1371/journal.pone.0044607

Full-Text   Cite this paper   Add to My Lib

Abstract:

Malaria causes more than 300 million clinical cases and 665,000 deaths each year, and the majority of the mortality and morbidity occurs in sub-Saharan Africa. Due to the lack of effective vaccines and wide-spread resistance to antimalarial drugs, mosquito control is the primary method of malaria prevention and control. Currently, malaria vector control relies on the use of insecticides, primarily pyrethroids. The extensive use of insecticides has imposed strong selection pressures for resistance in the mosquito populations. Consequently, resistance to pyrethroids in Anopheles gambiae, the main malaria vector in sub-Saharan Africa, has become a major obstacle for malaria control. A key element of resistance management is the identification of resistance mechanisms and subsequent development of reliable resistance monitoring tools. Field-derived An. gambiae from Western Kenya were phenotyped as deltamethrin-resistant or -susceptible by the standard WHO tube test, and their expression profile compared by RNA-seq. Based on the current annotation of the An. gambiae genome, a total of 1,093 transcripts were detected as significantly differentially accumulated between deltamethrin-resistant and -susceptible mosquitoes. These transcripts are distributed over the entire genome, with a large number mapping in QTLs previously linked to pyrethorid resistance, and correspond to heat-shock proteins, metabolic and transport functions, signal transduction activities, cytoskeleton and others. The detected differences in transcript accumulation levels between resistant and susceptible mosquitoes reflect transcripts directly or indirectly correlated with pyrethroid resistance. RNA-seq data also were used to perform a de-novo Cufflinks assembly of the An. gambiae genome.

References

[1]  WHO (2011) World Malaria Report. Geneva, World Health Organization; December.
[2]  WHO (2005) Malaria Control Today: Current WHO recommendations. Working document March. Geneva, World Health Organization.
[3]  Ranson H, N’Guessan R, Lines J, Moiroux N, Nkuni Z, et al. (2011) Pyrethroid resistance in African anopheline mosquitoes: what are the implications for malaria control? Trends in Parassitol 1: 98.
[4]  Butler D (2011) Mosquito score in chemical war. Nature 475: 19.
[5]  Martinez-Torres D, Chandre F, Williamson MS, Darriet F, Berge JB, et al. (1998) Molecular characterization of pyrethoid knowdown resistance (kdr) in the major malaria vector Anopheles gambiae s.s. Insect Mol Biol 7: 179–184.
[6]  Ranson H, Jensen B, Vulule JM, Wang X, Hemingway J, et al. (2000) Identification of a point mutation in the voltage-gated sodium channel gene of Kenyan Anopheles gambiae associated with resistance to DDT and pyrethoids. Insect Mol Biol 9: 491–497.
[7]  Lynd A, Weetman D, Barbosa S, Egyir Yawson A, et al. (2010) Field, genetic, and modeling approaches show strong positive selection acting upon an insecticide resistance mutation in Anopheles gambiae s.s. Mol Biol Evol 27: 1117–1125.
[8]  Nwane P, Etang J, Chouaibou M, Toto JC, Kerah-Hinzoumbe C, et al. (2009) Trends in DDT and pyrethroid resistance in Anopheles gambiae s.s. populations from urban and agro-industrial settings in southern Cameroon. BMC Infect Dis 9: 163.
[9]  Dabire KR, Diabaté A, Namountougou M, Toé KH, Ouari A, et al. (2009) Distribution of pyrethroid and DDT resistance and the L1014F kdr mutation in Anopheles gambiae s.l. from Burkina Faso (West Africa). Trans R Soc Trop Med Hyg 103: 1113–1120.
[10]  Mathias DK, Ochomo E, Atieli F, Ombok M, Bayoh MN, et al. (2011) Spatial and temporal variation in the kdr allele L1014S in Anopheles gambiae s.s. and phenotypic variability in susceptibility to insecticides in Western Kenya. Malar J 10: 10.
[11]  Stump AD, Atieli FK, Vulule JM, Besanski NJ (2004) Dynamics of the pyrethroids knockdown resistance allele in western Kenyan populations of Anopheles gambiae in response to insecticide-treated bed net trials. Am J Trop Med Hyg 70: 591–596.
[12]  Chouaibou M, Etang J, Brevault T, Nwane P, Hinzoumbe CK, et al. (2008) Dynamics of insecticide resistance in the malaria vector Anopheles gambiae s.l. from an area of extensive cotton cultivation in Northern Cameroon. Trop Med Int Health 13: 476–486.
[13]  Protopopoff N, Verhaeghen K, Van Bortel W, Roelants P, Marcotty T, et al. (2008) A significant increase in kdr in Anopheles gambiae is associated with an intensive vector control intervention in Burundi highlands. Trop Med Int Health 13: 1479–1487.
[14]  John R, Ephraim T, Andrew A (2008) Reduced susceptibility to pyrethroid insecticide treated nets by the malaria vector Anopheles gambiae s.l. in western Uganda. Malaria J 7: 92.
[15]  Yadouleton AW, Padonou G, Asidi A, Moiroux N, Bio-Banganna S, et al. (2010) Insecticide resistance status in Anopheles gambiae in southern Benin. Malaria J 9: 83.
[16]  Reimer L, Fondjo E, Patchoke S, Diallo B, Lee Y, et al. (2008) Relationship between kdr mutation and resistance to pyrethroid and DDT insecticides in natural populations of Anopheles gambiae. J Med Entomol 45: 260–266.
[17]  Donnelly MJ, Corbel V, Weetman D, Wilding CS, Williamson MS, et al. (2009) Does kdr genotype predict insecticide-resistance phenotype in mosquitoes? Trends Parasitol 25: 213–219.
[18]  Bayoh MN, Mathias DK, Odiere MR, Mutuku FM, Kamau L, et al. (2010) Anopheles gambiae: historical population decline associated with regional distribution of insecticide-treated bed nets in western Nyanza Province, Kenya. Malar J 9: 62.
[19]  Hemingway J, Hawkes NJ, McCarroll L, Ranson H (2004) The molecular basis of insecticide resistance in mosquitoes. Insect Biochem Mol Biol 34: 653–665.
[20]  Muller P, Donnelly MJ, Ranson H (2007) Transcription profiling of a recently colonized pyrethroid resistant Anopheles gambiae strain from Ghana. BMC Genomics 8: 36.
[21]  Wood O, Hanrahan S, Coetzee M, Koekemoer L, Brooke B (2010) Cuticle thickening associated with pyrethroid resistance in the major malaria vector Anopheles funestus.. Parasit Vectors 3: 67.
[22]  Ranson H, Paton MG, Jensen B, McCarroll L, Vaughan A, et al. (2004) Genetic mapping of genes conferring permethrin resistance in the malaria vector Anopheles gambiae. Insect Mol Biol 13: 379–386.
[23]  Wondji CS, Morgan J, Coetzee M, Hunt RH, Steen K, et al. (2007) Mapping a quantitative trait locus (QTL) conferring pyrethroid resistance in the African malaria vector Anopheles funestus. BMC Genomics 8: 34.
[24]  Saavedra-Rodriguez K, Strode C, Flores Suarez A, Fernandez Salas I, Ranson H, et al. (2008) Quantitative trait loci mapping of genome regions controlling permethrin resistance in the mosquito Aedes aegypti. Genetics 180: 1137–1152.
[25]  David JP, Strode C, Vontas J, Nikou D, Vaughan A, et al. (2005) The Anopheles gambiae detoxification chip: a highly specific microarray to study metabolic-based insecticide resistance in malaria vectors. Proc Natl Acad Sci USA 102: 4080.
[26]  Muller P, Warr E, Stevenson BJ, Pignatelli PM, Morgan JC, et al.. (2008) Field-caught permethrin-resistant Anopheles gambiae overexpress CYP6P3, a P450 that metabolises pyrethroids. PLoS Genetics e1000286.
[27]  Christian RN, Strode C, Ranson H, Coetzer N, Coetzee M, et al. (2011) Microarray analyses of a pyrethroid resistant African malaria vector, Anopheles funestus, from southern Africa. Pesticides Biochem and Physiol 99: 140–147.
[28]  Cloonan N, Grimmond SM (2008) Transcriptome content and dynamics at single-nucleotide resolution. Genome Biol 9: 234.
[29]  Crawford JE, Guelbeogo WM, Sanou A, Traoré A, Vernick KD, et al. (2010) De Novo Transcriptome Sequencing in Anopheles funestus Using Illumina RNA-Seq Technology. PLoS One 5: e14202.
[30]  Gibbons JG, Janson EM, Hittinger CT, Johnston M, Abbot P, et al. (2009) Benchmarking next-generation transcriptome sequencing for functional and evolutionary genomics. Mol Biol Evol 26: 2731–44.
[31]  David J-P, Coissac E, Melodelima C, Poupardin R, Riaz MA, et al. (2010) Transcriptome response to pollutants and insecticides in the dengue vector Aedes aegypti using next-generation sequencing technology. BMC Genomics 11: 216.
[32]  Neira-Oviedo M, Tsyganov-Bodounov A, Lycett GJ, Kokoza V, Raikhel AS, et al. (2011) The RNA-Seq approach to studying the expression of mosquito mitochondrial genes. Insect Mol Biol 20: 141–152.
[33]  Gregory R, Darby AC, Irving H, Coulibaly MB, Hughes M, et al. (2011) A De novo expression profiling of Anopheles funestus, malaria vector in Africa, using 454 pyrosequencing. PLoS One 6(2): e17418.
[34]  Bonizzoni M, Dunn WA, Campbell CL, Olson KE, Marinotti O, et al. (2012) Strain variation in the transcriptome of the dengue fever, Aedes aegypti. G3: Genes, Genomes, Genetics 2: 103–114.
[35]  WHO (1998) Test procedures for insecticide resistance monitoring in malaria vectors, bio-efficacy and persistence of insecticides on treated surfaces. WHO/CDS/CPC/MALI/9812.
[36]  Djouaka RF, Bakare AA, Coulibaly ON, Akogbeto MC, Ranson H, et al. (2008) Expression of cytochrome P450s, CYP6P3 and CYP6M2 are significantly elevated in multiple pyrethroid resistant populations of Anopheles gambiae s.s. from Southern Benin and Nigeria. BMC Genomics 9: 538.
[37]  Awolola TS, Oduola OA, Strode C, Kowkemoer LL, Brooke B, et al. (2009) Evidence of multiple pyrethorid resistance mechanisms in the malaria vector Anopheles gambiae sensu strictu from Nigeria. Trans R Soc Trop Med Hyg 103: 1139–1145.
[38]  Mitchell SN, Stevenson BJ, Muller P, Wilding CS, Egyr-Yawson A, et al. (2012) Identification and validation of a gene causing cross-resistance between insecticide classes in Anopheles gambiae from Ghana. Proc Natl Acad Sci USA 109: 6147–6152.
[39]  Vulule JM, Beach RF, Atieli FK, Roberts JM, Mount DL, et al. (1994) Reduced susceptibility of Anopheles gambiae to permethrin associated with the use of permethrin-impregnated bednets and curtains in Kenya. Med Vet Entomol 8: 71–75.
[40]  Scott JA, Brogdon W, Collins FH (1993) Identification of single specimens of the Anopheles gambiae complex by the polymerase chain reaction. Am J Trop Med Hyg 49: 520.
[41]  Bass C, Nikou D, Donnelly MJ, Williamson MS, Ranson H, et al. (2007) Detection of knockdown resistance (kdr) mutations in Anopheles gambiae: comparison of two new high-throughput assays with existing methods. Malaria J 6: 111.
[42]  Chen H, Githeko AK, Githure JI, Mutunga J, Zhou G, et al. (2008) Monooxygenase levels and knockdown resistance (kdr) allele frequencies in Anopheles gambiae and Anopheles arabiensis in Kenya. J Med Entomol 45: 242–250.
[43]  Trapnell C, Pachter L, Salzberg SL (2009) TopHat: discovering splice junctions with RNA-Seq. Bioinformatics 25: 1105–1111.
[44]  Trapnell C, Williams BA, Pertea G, Mortazavi A, Kwan G, et al. (2010) Transcript assembly and quantification by RNA-Seq reveals unannotated transcripts and isoform switching during cell differentiation. Nat Biotechnol 28: 511–515.
[45]  Reimand J, Arak T, Vilo J (2011) g:Profiler–a web server for functional interpretation of gene lists (2011 update). Nucleic Acids Res 39: W307–315.
[46]  Bustin SA, Benes V, Garson JA, Hellemans J, Huggett J, et al. (2009) The MIQE guidelines: minimum information for publication of quantitative real-time PCR experiments. Clin Chem 55: 611–622.
[47]  Schmittgen TD, Livak KJ (2008) Analyzing real-time PCR data by the comparative C(T) method. Nat Protoc 3: 1101–1118.
[48]  Lombardo F, Ronca R, Rizzo C, Mestres-Simòn M, Lanfrancotti A, et al. (2009) The Anopheles gambiae salivary protein gSG6: an anopheline-specific protein with a blood-feeding role. Insect Biochem Mol Biol 39: 457–466.
[49]  Soderlund DM, Clark JM, Sheets LP, Mullin LS, Piccirillo VJ, et al. (2002) Mechanisms of pyrethroid neurotoxicity: implications for cumulatibe risk assessment. Toxicology 3: 59.
[50]  Khambay BPS,Jewess PJ (2010) Pyrethroids. In Insect Control Biological and Synthetic Agents. Edited by Gilbert LI and Gill SS: Oxford, UK: Elsivier; : 1–29.
[51]  Soderlund DM, Knipple DC (2003) The molecular biology of knockdown resistance to pyrethroid insecticides. Insect Biochem Mol Biol 33: 563–577.
[52]  Stevenson BJ, Bibby J, Pignatelli P, Muangnoicharoen S, O’Neill PM, et al. (2011) Cytochrome P450 6M2 from the malaria vector Anopheles gambiae metabolizes pyrethroids: Sequential metabolism of deltamethrin revealed. Insect Biochem Mol Biol 41: 492–502.
[53]  Zhong D (2011) Molecular and biochemical evidence for pyrethroid resistance mechanism in the malaria vector Anopehels sinesis mosquitoes. 60th ASTMH Meeting, Poster LB-2263. Available: http://www.abstractsonline.com/Plan/SSRe?sults.aspx. Accessed 2012 May 1.
[54]  Vincent JF, Wegst UG (2004) Design and mechanical properties of insect cuticle. Arthropod Struct Dev 33: 187–99.
[55]  Cornman RS, Togawa T, Dunn WA, He N, Emmons AC, et al. (2008) Annotation and analysis of a large cuticular protein family with the R&R Consensus in Anopheles gambiae.. BMC Genomics 9: 22.
[56]  Willis JH, Iconomidou VA, Smith RF, Hamodrakas SJ (2005) Cuticular proteins. In Comprehensive molecular insect science. Gilbert LI, Iatrou K, Gill SS, editors. Vol. 4. Elsevier B.V., Amsterdam; New York. 79–109.
[57]  Togawa T, Dunn WA, Emmons AC, Nagao J, Willis JH (2008) Developmental expression patterns of cuticular protein genes with the R&R Consensus from Anopheles gambiae. Insect Biochem Mol Biol 38: 508–519.
[58]  Rund SS, Hou TY, Ward SM, Collins FH, Duffield GE (2011) Genome-wide profiling of diel and circadian gene expression in the malaria vector Anopheles gambiae. Proc Natl Acad Sci USA 108: E421–30.
[59]  Marinotti O, Calvo E, Nguyen QK, Dissanayake S, Ribeiro JM, et al. (2006) Genome-wide analysis of gene expression in adult Anopheles gambiae. Insect Mol Biol 15: 1–12.
[60]  Lindquist S, Craig EA (1988) The heat-shock proteins. Annu Rev Genet 22: 631–677.
[61]  Benoit JB, Lopez-Martinez G, Phillips ZP, Patrick KR, Denlinger DL (2010) Heat shock proteins contribute to mosquito dehydration tolerance. J Insect Physiol 56: 151–156.
[62]  Benoit JB, Lopez-Martinez G, Patrick KR, Phillips ZP, Krause TB, et al. (2011) Drinking a hot blood meal elicits a protective heat shock response in mosquitoes. Proc Natl Acad Sci USA 108: 8026–8029.
[63]  Sim C, Hong YS, Tsetsarkin KA, Vanlandingham DL, Higgs S, et al. (2007) Anopheles gambiae heat shock protein cognate 70B impedes o’nyong-nyong virus replication. BMC Genomics 8: 231.
[64]  Vontas J, Blass C, Koutsos AC, David J-P, Kafatos FC, et al. (2005) Gene Expression in insecticide resistant and susceptible Anopheles gambiae strains constitutively or after insecticide exposure. Insect Mol Biol 14: 509–521.
[65]  Pedra JHF, McIntyre LM, Scharf ME, Pittendrigh BR (2004) Genome-wide transcription profile of field- and laboratory-selected dichlorodiphenyltrichloroethane (DDT)-resistant Drosophila. Proc Natl Acad Sci USA 101: 7034–7039.
[66]  Ahmed S, Wilkins RM, Mantle D (1998) Comparison of proteolytic enzyme activities in adults of insecticide resistant and susceptible strains of the housefly Musca domestica L. Insect Biochem Mol Biol. 28: 629–639.
[67]  Stelzer KJ, Gordon MA (1985) Interactions of pyrethroids with phosphatidylcholine liposomal membranes. Biochimica et Biophysica Acta 812: 361–638.
[68]  Kamalaveni K, Gopal V, Sampson U, Aruna D (2001) Effect of pyrethroids on carbohydrate metabolisms pathways in common carp, Cyprinus carpio. Pest Manag Scim 57: 1151–1154.
[69]  Dvorak Z, Ulrichova J, Modriansky M (2005) Role of microtubules network in CYP gene expression. Curr Drug Metab 6: 545–552.
[70]  Li T, Liu N (2011) A rhodopsin-like G-protein coupled receptor in insecticide resistance of mosquitoes, Culex quinquefasciatus. 2011 ESA Annual Meetings, Online Program. Available: http://esa.confex.com/esa/2011/webprogra?m/Paper56644.html. Accessed 2012 May 1.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133