全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
PLOS ONE  2012 

Increased Microparticle Production and Impaired Microvascular Endothelial Function in Aldosterone-Salt-Treated Rats: Protective Effects of Polyphenols

DOI: 10.1371/journal.pone.0039235

Full-Text   Cite this paper   Add to My Lib

Abstract:

We aimed to characterize circulating microparticles in association with arterial stiffness, inflammation and endothelial dysfunction in aldosterone-salt-induced hypertension in rats and to investigate the preventive effects of red wine polyphenols. Uninephrectomized male Sprague-Dawley rats were treated with aldosterone-salt (1 μg.h?1), with or without administration of either red wine polyphenols, Provinols? (20 mg.kg?1.day?1), or spironolactone (30 mg.kg?1.day?1) for 4 weeks. Microparticles, arterial stiffness, nitric oxide (NO) spin trapping, and mesenteric arterial function were measured. Aldosterone-salt rats showed increased microparticle levels, including those originating from platelets, endothelium and erythrocytes. Hypertension resulted in enhanced aortic stiffness accompanied by increased circulating and aortic NO levels and an upregulation of aortic inducible NO-synthase, NFκB, superoxide anions and nitrotyrosine. Flow-induced dilatation was reduced in mesenteric arteries. These effects were prevented by spironolactone. Provinols? did not reduce arterial stiffness or systolic hypertension but had effects similar to those of spironolactone on endothelial function assessed by flow-mediated vasodilatation, microparticle generation, aortic NO levels and oxidative stress and apoptosis in the vessel wall. Neither the contractile response nor endothelium-dependent relaxation in mesenteric arteries differed between groups. The in vivo effects of Provinols? were not mediated by mineralocorticoid receptors or changes in shear stress. In conclusion, vascular remodelling and endothelial dysfunction in aldosterone-salt-mediated hypertension are associated with increased circulating microparticles. Polyphenols prevent the enhanced release of microparticles, macrovascular inflammation and oxidative stress, and microvascular endothelial dysfunction independently of blood pressure, shear stress and mineralocorticoid receptor activation in a model of hyperaldosteronism.

References

[1]  Shibata S, Nagase M, Yoshida S, Kawachi H, Fujita T (2007) Podocyte as the target for aldosterone: roles of oxidative stress and Sgk1. Hypertension 49: 355–364.
[2]  Lacolley P, Labat C, Pujol A, Delcayre C, Benetos A, et al. (2002) Increased carotid wall elastic modulus and fibronectin in aldosterone-salt-treated rats: effects of eplerenone. Circulation 106: 2848–2853.
[3]  Brilla CG, Matsubara LS, Weber KT (1993) Anti-aldosterone treatment and the prevention of myocardial fibrosis in primary and secondary hyperaldosteronism. J Mol Cell Cardiol 25: 563–575.
[4]  Savoia C, Touyz RM, Amiri F, Schiffrin EL (2008) Selective mineralocorticoid receptor blocker eplerenone reduces resistance artery stiffness in hypertensive patients. Hypertension 51: 432–439.
[5]  Schiffrin EL (2006) Effects of aldosterone on the vasculature. Hypertension 47: 312–318.
[6]  Martinez MC, Tual-Chalot S, Leonetti D, Andriantsitohaina R (2011) Microparticles: targets and tools in cardiovascular disease. Trends Pharmacol Sci 32: 659–665.
[7]  Wang JM, Su C, Wang Y, Huang YJ, Yang Z, et al. (2009) Elevated circulating endothelial microparticles and brachial-ankle pulse wave velocity in well-controlled hypertensive patients. J Hum Hypertens 23: 307–315.
[8]  Agouni A, Lagrue-Lak-Hal AH, Ducluzeau PH, Mostefai HA, Draunet-Busson C, et al. (2008) Endothelial dysfunction caused by circulating microparticles from patients with metabolic syndrome. Am J Pathol 173: 1210–1219.
[9]  Diebolt M, Bucher B, Andriantsitohaina R (2001) Wine polyphenols decrease blood pressure, improve NO vasodilatation, and induce gene expression. Hypertension 38: 159–165.
[10]  Andriambeloson E, Kleschyov AL, Muller B, Beretz A, Stoclet JC, et al. (1997) Nitric oxide production and endothelium-dependent vasorelaxation induced by wine polyphenols in rat aorta. Br J Pharmacol 120: 1053–1058.
[11]  Bernatova I, Pechanova O, Babal P, Kysela S, Stvrtina S, et al. (2002) Wine polyphenols improve cardiovascular remodeling and vascular function in NO-deficient hypertension. Am J Physiol Heart Circ Physiol 282: H942–H948.
[12]  Pechanova O, Bernatova I, Babal P, Martinez MC, Kysela S, et al. (2004) Red wine polyphenols prevent cardiovascular alterations in L-NAME-induced hypertension. J Hypertens 22: 1551–1559.
[13]  Lopez-Sepulveda R, Jimenez R, Romero M, Zarzuelo MJ, Sanchez M, et al. (2008) Wine polyphenols improve endothelial function in large vessels of female spontaneously hypertensive rats. Hypertension 51: 1088–1095.
[14]  Chalopin M, Tesse A, Martinez MC, Rognan D, Arnal JF, et al. (2010) Estrogen receptor alpha as a key target of red wine polyphenols action on the endothelium. PLoS One 5: e8554.
[15]  Carlstrom M, Sallstrom J, Skott O, Larsson E, Persson AE (2007) Uninephrectomy in young age or chronic salt loading causes salt-sensitive hypertension in adult rats. Hypertension 49: 1342–1350.
[16]  Park JB, Schiffrin EL (2001) ET(A) receptor antagonist prevents blood pressure elevation and vascular remodeling in aldosterone-infused rats. Hypertension 37: 1444–1449.
[17]  Baron-Menguy C, Bocquet A, Guihot AL, Chappard D, Amiot MJ, et al. (2007) Effects of red wine polyphenols on postischemic neovascularization model in rats: low doses are proangiogenic, high doses anti-angiogenic. Faseb J 21: 3511–3521.
[18]  Tual-Chalot S, Guibert C, Muller B, Savineau JP, Andriantsitohaina R, et al. (2010) Circulating microparticles from pulmonary hypertensive rats induce endothelial dysfunction. Am J Respir Crit Care Med 182: 261–268.
[19]  Tardy Y, Meister J-J, Perret F, Brunner H, Ardity M (1991) Non-invasive estimate of the mechanical properties of peripheral arteries from ultrasonic and photoplethysmographic measurements. Clin Phys Physiol Meas 12: 39–54.
[20]  Huang W, Alhenc Gelas F, Osborne-Pellegrin MJ (1998) Protection of the arterial internal elastic lamina by inhibition of the renin-angiotensin system in the rat. Circ Res 82: 879–890.
[21]  Mulsch A, Mordvintcev P, Bassenge E, Jung F, Clement B, et al. (1995) In vivo spin trapping of glyceryl trinitrate-derived nitric oxide in rabbit blood vessels and organs. Circulation 92: 1876–1882.
[22]  Kleschyov AL, Wenzel P, Munzel T (2007) Electron paramagnetic resonance (EPR) spin trapping of biological nitric oxide. J Chromatogr B Analyt Technol Biomed Life Sci 851: 12–20.
[23]  Ohlmann P, Tesse A, Loichot C, Ralay Ranaivo H, Roul G, et al. (2005) Deletion of MLCK210 induces subtle changes in vascular reactivity but does not affect cardiac function. Am J Physiol Heart Circ Physiol 289: H2342–H2349.
[24]  Membre A, Wahl D, Latger-Cannard V, Max JP, Lacolley P, et al. (2008) The effect of platelet activation on the hypercoagulability induced by murine monoclonal antiphospholipid antibodies. Haematologica 93: 566–573.
[25]  Lopez-Andres N, Fortuno MA, Diez J, Zannad F, Lacolley P, et al. (2010) Vascular effects of cardiotrophin-1: a role in hypertension? J Hypertens 28: 1261–1272.
[26]  Di Zhang A, Nguyen Dinh Cat A, Soukaseum C, Escoubet B, Cherfa A, et al. (2008) Cross-talk between mineralocorticoid and angiotensin II signaling for cardiac remodeling. Hypertension 52: 1060–1067.
[27]  Nakamura Y, Suzuki S, Suzuki T, Ono K, Miura I, et al. (2006) MDM2: a novel mineralocorticoid-responsive gene involved in aldosterone-induced human vascular structural remodeling. Am J Pathol 169: 362–371.
[28]  Mercier N, Osborne-Pellegrin M, El Hadri K, Kakou A, Labat C, et al. (2006) Carotid arterial stiffness, elastic fibre network and vasoreactivity in semicarbazide-sensitive amine-oxidase null mouse. Cardiovasc Res 72: 349–357.
[29]  Preston RA, Jy W, Jimenez JJ, Mauro LM, Horstman LL, et al. (2003) Effects of severe hypertension on endothelial and platelet microparticles. Hypertension 41: 211–217.
[30]  Martinez MC, Tesse A, Zobairi F, Andriantsitohaina R (2005) Shed membrane microparticles from circulating and vascular cells in regulating vascular function. Am J Physiol Heart Circ Physiol 288: H1004–H1009.
[31]  Boulanger CM, Scoazec A, Ebrahimian T, Henry P, Mathieu E, et al. (2001) Circulating microparticles from patients with myocardial infarction cause endothelial dysfunction. Circulation 104: 2649–2652.
[32]  Chahed S, Leroyer AS, Benzerroug M, Gaucher D, Georgescu A, et al. (2010) Increased vitreous shedding of microparticles in proliferative diabetic retinopathy stimulates endothelial proliferation. Diabetes 59: 694–701.
[33]  Martin S, Tesse A, Hugel B, Martinez MC, Morel O, et al. (2004) Shed membrane particles from T lymphocytes impair endothelial function and regulate endothelial protein expression. Circulation 109: 1653–1659.
[34]  Mesri M, Altieri DC (1998) Endothelial cell activation by leukocyte microparticles. J Immunol 161: 4382–4387.
[35]  Priou P, Gagnadoux F, Tesse A, Mastronardi ML, Agouni A, et al. (2010) Endothelial dysfunction and circulating microparticles from patients with obstructive sleep apnea. Am J Pathol 177: 974–983.
[36]  Meziani F, Tesse A, David E, Martinez MC, Wangesteen R, et al. (2006) Shed membrane particles from preeclamptic women generate vascular wall inflammation and blunt vascular contractility. Am J Pathol 169: 1473–1483.
[37]  Williams TA, Verhovez A, Milan A, Veglio F, Mulatero P (2006) Protective effect of spironolactone on endothelial cell apoptosis. Endocrinology 147: 2496–2505.
[38]  Martin S, Giannone G, Andriantsitohaina R, Martinez MC (2003) Delphinidin, an active compound of red wine, inhibits endothelial cell apoptosis via nitric oxide pathway and regulation of calcium homeostasis. Br J Pharmacol 139: 1095–1102.
[39]  Jeong Y, Chaupin DF, Matsushita K, Yamakuchi M, Cameron SJ, et al. (2009) Aldosterone activates endothelial exocytosis. Proc Natl Acad Sci U S A 106: 3782–3787.
[40]  Schafer C, Shahin V, Albermann L, Schillers H, Hug MJ H (2003) Intracellular calcium: a prerequisite for aldosterone action. J Membr Biol 196: 157–162.
[41]  Lijnen P, Petrov V (1996) Cell membrane cation transport systems during aldorsterone antagonism. J Cardiovasc Pharmacol 27: 462–468.
[42]  Freedman JE, Parker C, 3rd, Li L, Perlman JA, Frei B, et al (2001) Select flavonoids and whole juice from purple grapes inhibit platelet function and enhance nitric oxide release. Circulation 103: 2792–2798.
[43]  Jelic S, Lederer DJ, Adams T, Padeletti M, Colombo PC, et al. (2009) Endothelial repair capacity and apoptosis are inversely related in obstructive sleep apnea. Vasc Health Risk Manag 5: 909–920.
[44]  Boulanger CM, Amabile N, Guerin AP, Pannier B, Leroyer AS, et al. (2007) In vivo shear stress determines circulating levels of endothelial microparticles in end-stage renal disease. Hypertension 49: 902–908.
[45]  Garwitz ET, Jones AW (1982) Aldosterone infusion into the rat and dose-dependent changes in blood pressure and arterial ionic transport. Hypertension 4: 374–381.
[46]  Sun Y, Ramires FJ, Weber KT (1997) Fibrosis of atria and great vessels in response to angiotensin II or aldosterone infusion. Cardiovasc Res 35: 138–147.
[47]  Jimenez R, Lopez-Sepulveda R, Kadmiri M, Romero M, Vera R, et al. (2007) Polyphenols restore endothelial function in DOCA-salt hypertension: role of endothelin-1 and NADPH oxidase. Free Radic Biol Med 43: 462–473.
[48]  Zhao W, Ahokas RA, Weber KT, Sun Y (2006) Ang II-induced cardiac molecular and cellular events: role of aldosterone. Am J Physiol Heart Circ Physiol 291: H336–H343.
[49]  Callera GE, Touyz RM, Tostes RC, Yogi A, He Y, et al. (2005) Aldosterone activates vascular p38MAP kinase and NADPH oxidase via c-Src. Hypertension 45: 773–779.
[50]  Zhou X, Bohlen HG, Miller SJ, Unthank JL (2008) NAD(P)H oxidase-derived peroxide mediates elevated basal and impaired flow-induced NO production in SHR mesenteric arteries in vivo. Am J Physiol Heart Circ Physiol 295: H1008–H1016.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133