Patterns of protein interactions provide important insights in basic biology, and their analysis plays an increasing role in drug development and diagnostics of disease. We have established a scalable technique to compare two biological samples for the levels of all pairwise interactions among a set of targeted protein molecules. The technique is a combination of the proximity ligation assay with readout via dual tag microarrays. In the proximity ligation assay protein identities are encoded as DNA sequences by attaching DNA oligonucleotides to antibodies directed against the proteins of interest. Upon binding by pairs of antibodies to proteins present in the same molecular complexes, ligation reactions give rise to reporter DNA molecules that contain the combined sequence information from the two DNA strands. The ligation reactions also serve to incorporate a sample barcode in the reporter molecules to allow for direct comparison between pairs of samples. The samples are evaluated using a dual tag microarray where information is decoded, revealing which pairs of tags that have become joined. As a proof-of-concept we demonstrate that this approach can be used to detect a set of five proteins and their pairwise interactions both in cellular lysates and in fixed tissue culture cells. This paper provides a general strategy to analyze the extent of any pairwise interactions in large sets of molecules by decoding reporter DNA strands that identify the interacting molecules.
References
[1]
Vidal M, Cusick ME, Barabási A-L (2011) Interactome networks and human disease. Cell 144: 986–998. doi:10.1016/j.cell.2011.02.016.
[2]
F?rster T (1948) Zwischenmolekulare Energiewanderung und Fluoreszenz. Annalen der Physik 437: 55–75. doi:10.1002/andp.19484370105.
[3]
Stryer L, Haugland RP (1967) Energy transfer: a spectroscopic ruler. Proc Natl Acad Sci U S A 58: 719–726.
[4]
Kenworthy AK (2001) Imaging Protein-Protein Interactions Using Fluorescence Resonance Energy Transfer Microscopy. Methods 24: 289–296. doi:06/meth.2001.1189.
[5]
Shi Y, Huang W, Tan Y, Jin X, Dua R, et al. (2009) A Novel Proximity Assay for the Detection of Proteins and Protein Complexes: Quantitation of HER1 and HER2 Total Protein Expression and Homodimerization in Formalin-fixed, Paraffin-Embedded Cell Lines and Breast Cancer Tissue. Diagnostic Molecular Pathology 18: 11–21. doi:10.1097/PDM.0b013e31818cbdb2.
[6]
McGregor LM, Gorin DJ, Dumelin CE, Liu DR (2010) Interaction-dependent PCR: identification of ligand-target pairs from libraries of ligands and libraries of targets in a single solution-phase experiment. J Am Chem Soc 132: 15522–15524. doi:10.1021/ja107677q.
[7]
Fredriksson S, Gullberg M, Jarvius J, Olsson C, Pietras K, et al. (2002) Protein detection using proximity-dependent DNA ligation assays. Nat Biotechnol 20: 473–477. doi:10.1038/nbt0502-473.
[8]
Gullberg M, Gústafsdóttir SM, Schallmeiner E, Jarvius J, Bjarneg?rd M, et al. (2004) Cytokine detection by antibody-based proximity ligation. Proc Natl Acad Sci USA 101: 8420–8424. doi:10.1073/pnas.0400552101.
[9]
Soderberg O, Gullberg M, Jarvius M, Ridderstrale K, Leuchowius K-J, et al. (2006) Direct observation of individual endogenous protein complexes in situ by proximity ligation. Nat Meth 3: 995–1000. doi:10.1038/nmeth947.
[10]
Schallmeiner E, Oksanen E, Ericsson O, Sp?ngberg L, Eriksson S, et al. (2007) Sensitive protein detection via triple-binder proximity ligation assays. Nat Methods 4: 135–137. doi:10.1038/nmeth974.
[11]
Gustafsdottir SM, Wennstr?m S, Fredriksson S, Schallmeiner E, Hamilton AD, et al. (2008) Use of proximity ligation to screen for inhibitors of interactions between vascular endothelial growth factor A and its receptors. Clin Chem 54: 1218–1225. doi:10.1373/clinchem.2007.099424.
[12]
Gustafsdottir SM, Schlingemann J, Rada-Iglesias A, Schallmeiner E, Kamali-Moghaddam M, et al. (2007) In vitro analysis of DNA-protein interactions by proximity ligation. Proc Natl Acad Sci USA 104: 3067–3072. doi:10.1073/pnas.0611229104.
[13]
Weibrecht I, Gavrilovic M, Lindbom L, Landegren U, W?hlby C, et al. (2011) Visualising individual sequence-specific protein-DNA interactions in situ. N Biotechnol. Accessed 24 January 2012.
[14]
Kamali-Moghaddam M, Pettersson FE, Wu D, Englund H, Darmanis S, et al. (2010) Sensitive detection of Aβ protofibrils by proximity ligation–relevance for Alzheimer’s disease. BMC Neurosci 11: 124. doi:10.1186/1471-2202-11-124.
[15]
Jarvius M, Paulsson J, Weibrecht I, Leuchowius K-J, Andersson A-C, et al. (2007) In situ detection of phosphorylated platelet-derived growth factor receptor beta using a generalized proximity ligation method. Mol Cell Proteomics 6: 1500–1509. doi:10.1074/mcp.M700166-MCP200.
[16]
Conze T, Carvalho AS, Landegren U, Almeida R, Reis CA, et al. (2010) MUC2 mucin is a major carrier of the cancer-associated sialyl-Tn antigen in intestinal metaplasia and gastric carcinomas. Glycobiology 20: 199–206. doi:10.1093/glycob/cwp161.
[17]
Fredriksson S, Dixon W, Ji H, Koong AC, Mindrinos M, et al. (2007) Multiplexed protein detection by proximity ligation for cancer biomarker validation. Nat Methods 4: 327–329. doi:10.1038/nmeth1020.
[18]
Fredriksson S, Horecka J, Brustugun OT, Schlingemann J, Koong AC, et al. (2008) Multiplexed proximity ligation assays to profile putative plasma biomarkers relevant to pancreatic and ovarian cancer. Clin Chem 54: 582–589. doi:10.1373/clinchem.2007.093195.
[19]
Lundberg M, Thorsen SB, Assarsson E, Villablanca A, Tran B, et al. (2011) Multiplexed homogeneous proximity ligation assays for high-throughput protein biomarker research in serological material. Mol Cell Proteomics 10: M110.004978. doi:10.1074/mcp.M110.004978.
[20]
Darmanis S, Nong RY, V?nelid J, Siegbahn A, Ericsson O, et al. (2011) ProteinSeq: High-Performance Proteomic Analyses by Proximity Ligation and Next Generation Sequencing. PLoS ONE 6: e25583. doi:10.1371/journal.pone.0025583.
[21]
Ericsson O, Jarvius J, Schallmeiner E, Howell M, Nong RY, et al. (2008) A dual-tag microarray platform for high-performance nucleic acid and protein analyses. Nucl Acids Res 36: e45. doi:10.1093/nar/gkn106.
[22]
Schr?der C, Jacob A, Tonack S, Radon TP, Sill M, et al. (2010) Dual-color proteomic profiling of complex samples with a microarray of 810 cancer-related antibodies. Mol Cell Proteomics 9: 1271–1280. doi:10.1074/mcp.M900419-MCP200.
[23]
Darmanis S, Nong RY, Hammond M, Gu J, Alderborn A, et al. (2010) Sensitive plasma protein analysis by microparticle-based proximity ligation assays. Mol Cell Proteomics 9: 327–335. doi:10.1074/mcp.M900248-MCP200.
[24]
Hoffmann A, Natoli G, Ghosh G (2006) Transcriptional regulation via the NF-kappaB signaling module. Oncogene 25: 6706–6716. doi:10.1038/sj.onc.1209933.