全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
PLOS ONE  2012 

Taxonomic Identity of the Invasive Fruit Fly Pest, Bactrocera invadens: Concordance in Morphometry and DNA Barcoding

DOI: 10.1371/journal.pone.0044862

Full-Text   Cite this paper   Add to My Lib

Abstract:

In 2003, a new fruit fly pest species was recorded for the first time in Kenya and has subsequently been found in 28 countries across tropical Africa. The insect was described as Bactrocera invadens, due to its rapid invasion of the African continent. In this study, the morphometry and DNA Barcoding of different populations of B. invadens distributed across the species range of tropical Africa and a sample from the pest's putative aboriginal home of Sri Lanka was investigated. Morphometry using wing veins and tibia length was used to separate B. invadens populations from other closely related Bactrocera species. The Principal component analysis yielded 15 components which correspond to the 15 morphometric measurements. The first two principal axes contributed to 90.7% of the total variance and showed partial separation of these populations. Canonical discriminant analysis indicated that only the first five canonical variates were statistically significant. The first two canonical variates contributed a total of 80.9% of the total variance clustering B. invadens with other members of the B. dorsalis complex while distinctly separating B. correcta, B. cucurbitae, B. oleae and B. zonata. The largest Mahalanobis squared distance (D2 = 122.9) was found to be between B. cucurbitae and B. zonata, while the lowest was observed between B. invadens populations against B. kandiensis (8.1) and against B. dorsalis s.s (11.4). Evolutionary history inferred by the Neighbor-Joining method clustered the Bactrocera species populations into four clusters. First cluster consisted of the B. dorsalis complex (B. invadens, B. kandiensis and B. dorsalis s. s.), branching from the same node while the second group was paraphyletic clades of B. correcta and B. zonata. The last two are monophyletic clades, consisting of B. cucurbitae and B. oleae, respectively. Principal component analysis using the genetic distances confirmed the clustering inferred by the NJ tree.

References

[1]  Clarke AR, Armstrong KF, Carmichael AE, Milne JR, Raghu S, et al. (2005) Invasive phytophagous pests arising through a recent evolutionary radiation: the Bactrocera dorsalis complex of fruit flies. Annual Review of Entomology 50: 293–319.
[2]  McPheron BA, Steck GJ (1996) Fruit Fly Pests: A world assessment of their biology and management. St Lucie Press, Delray Beach, FL.
[3]  Lux SA, Copeland RS, White IM, Manrakhan A, Billah MK (2003) A New Invasive Fruit Fly Species from the Bactrocera dorsalis (Hendel) Group Detected in East Africa. Insect Science and Its Application 23(4):355–361.
[4]  Drew RAI, Tsuruta K, White IM (2005) A new species of pest fruit fly (Diptera: Tephritidae: Dacinae) from Sri Lanka and Africa. African Entomology 13: 149–154.
[5]  Drew RAI, Raghu S, Halcoop P (2008) Bridging the morphological and biological species concepts: studies on the Bactrocera dorsalis (Hendel) complex (Diptera: Tephritidae: Dacinae) in South-east Asia. Biological Journal of the Linnean Society 93: 217–226.
[6]  French C (2005) The new invasive Bactrocera species. pp. 19–20 in Insect Pest Control Newsletter, No. 65. International Atomic Energy Agency, Vienna, Austria.
[7]  Vayssières JF, Goergen G, Lokossou O, Dossa P, Akponon C (2005) A new Bactrocera species in Benin among mango fruit fly (Diptera: Tephritidae) species. Fruits 60: 371–377.
[8]  Ekesi S, Nderitu PW, Rwomushana I (2006) Field infestation, life history and demographic parameters of the fruit fly Bactrocera invadens (Diptera: Tephritidae) in Africa. Bulletin of Entomological Research 96: 379–386.
[9]  Mwatawala MW, De Meyer M, Makundi RH, Maerere AP (2006a) Biodiversity of fruit flies (Diptera, Tephritidae) at orchards in different agro-ecological zones of the Morogoro region, Tanzania. Fruits 61: 321–332.
[10]  Ekesi S, Billah MK (2007) A field guide to the management of economically important tephritid fruit flies in Africa. ICIPE Science Press, Nairobi, Kenya.
[11]  Abanda F-XN, Quilici S, Vayssiéres JF, Kouodiekong L, Woin N (2008) Inventory of fruit flies species on guava in the area of Yaounde, Cameroon. Fruits 63: 19–26.
[12]  Rwomushana I, Ekesi S, Gordon I, Ogol CKPO (2008) Host plant and host plant preference studies for Bactrocera invadens (Diptera: Tephritidae) in Kenya, a new invasive fruit fly species in Africa. Annals of the Entomological Society of America 101: 331–340.
[13]  Mwatawala MW, De Meyer M, Makundi RH, Maerere AP (2009) Host range and distribution of fruit-infesting pestiferous fruit flies (Diptera, Tephritidae) in selected areas of Central Tanzania. Bulletin of Entomological Research 1–13.
[14]  Goergen G, Vayssières J-F, Gnanvossou D, Tindo M (2011) Bactrocera invadens (Diptera: Tephritidae), a new invasive fruit fly pest for the Afrotropical region: Host plant range and distribution in west and central Africa. Entomological Society of America 40(4):844–854 2011. DOI: 10.1603/EN11017.
[15]  Vayssières JF, Korie S, Ayegnon D (2009) Correlation of fruit fly (Diptera Tephritidae) infestation of major mango cultivars in Borgou (Benin) with abiotic and biotic factors and assessment of damage. Crop protection 28: 477–488.
[16]  Van Houdt JKJ, Breman FC, Virgilio M, De Meyer M (2010) Recovering full DNA barcodes from natural history collections of Tephritid fruitflies (Tephritidae, Diptera) using mini barcodes. Molecular Ecology Resources 10: 459–465.
[17]  Drew RAI, Hancock DL (1994) The Bactrocera dorsalis complex of fruit flies (Diptera: Tephritidae: Dacinae) in Asia. Bulletin of Entomological Research, Supplement Series 2: 1–68.
[18]  Lawson AE, McGuire DJ, Yeates DK, Drew RAI, Clarke AR (2003) Dorsalis: an interactive identification tool to fruit flies of the Bactrocera dorsalis complex. CD-ROM Publication, Griffith University, Brisbane, Australia.
[19]  Armstrong KF, Cameron CM (2000) Species identification of tephritids across a broad taxonomic range. In: Tan KH, ed. Area-wide control of fruit flies and other insect pests. London: CABI, 703–710.
[20]  Muraji M, Nakahara S (2002) Discrimination among pest species of Bactrocera (Diptera: Tephritidae) based on PCR-RFLP of the mitochrondrial DNA. Applied Entomology and Zoology 37: 437–446.
[21]  Nakahara S, Kato H, Kaneda M, Sugimoto T, Muraji M (2001) Identification of Bactrocera dorsalis complex species (Diptara: Tephritidae) by PCR-RFLP analysis. II.Astudy of genetic variation in B. dorsalis complex (Philippines population) and B. dorsalis (Taiwan population). Res Bull Plant Prot Serv Jpn 37: 69–73.
[22]  Tan KH, Tokushima I, Ono H, Nishida R (2010) Comparison of phenylpropanoid volatiles in male rectal pheromone gland after methyl eugenol consumption, and molecular phylogenetic relationship of four global pest fruit fly species: Bactrocera invadens, B. dorsalis, B. correcta and B. zonata. Chemoecology, Springer. DOI 10.1007/s00049-010-0063-1.
[23]  Schutze MK, Jessup A, Clarke AR (2011) Wing shape as a potential discriminator of morphologically similar pest taxa within the Bactrocera dorsalis species complex (Diptera: Tephritidae). Bulletin of Entomological Research 1–9 Doi:10.1017/S0007485311000423.
[24]  Reyment RA, Blackith RE, Campbell NA (1984) Multivariate morphometrics (second edition). Academic Press, London.
[25]  Perero JG, Nasca AJ, Stilinovic D (1984) Introducción a un estudio morfológico-taxonómico de especímenes de Anastrepha fraterculus Wiedemann colectados sobre distintos hospederos en la Provincia de Tucumán. pp. 421–455 in Anales II Congreso Internacional de Biomatemáticas, Facultad de Ciencias Exactas y Naturales, Buenos Aires, Argentina.
[26]  Willig RM, Owen RD, Colbert RL (1986) Assessment of morphometric variation in natural populations: the inadequacy of the univariate approach. Systematic Zoology 35: 195–203.
[27]  McNamee S, Dytham C (1993) Morphometric discrimination of the species Drosophila melanogaster (Meigen) and D. simulans (Sturtevant) (Diptera: Drosophilidae). Systematic Entomology 18: 231–236.
[28]  Selivon D (1996) Estudo sobre a diferencia?ao populacional em Anastrepha fraterculus (Wiedemann) (Diptera: Tephritidae). 137 pp. PhD thesis (unpublished), Instituto de Biociencias, Universidade de Sao Paulo, Brazil.
[29]  Adsavakulchai A, Baimai V, Prachyabrued W, Grote PJ, Lertlum S (1999) Morphometric study for identification of the Bactrocera dorsalis complex (Diptera: Tephritidae) using wing image analysis. Biotropica 13: 37–48.
[30]  De Meyer M (2005) Phylogenetic relationships within the fruit fly genus Ceratitis MacLeay (Diptera: Tephritidae), derived from morphological and host plant evidence. Insect Systematics and Evolution 36: 459–480.
[31]  Drew RAI, Dorji C, Romig MC, Loday P (2006) Attractiveness of various combinations of colors and shapes to females and males of Bactrocera minax (Diptera: Tephritidae) in a commercial mandarin grove in Bhutan. Journal of Economic Entomology 99: 1651–1656.
[32]  Armstrong KF, Cameron CM, Frampton ER (1997) Fruit fly (Diptera: Tephritidae) species identification: a rapid molecular diagnostic technique for quarantine application. Bulletin of Entomological Research 87: 111–118.
[33]  De Meyer M (2000) Systematic revision of the subgenus Ceratitis MacLeay s. s (Diptera: Tephritidae). Zoological Journal of the Linnean Society 128: 439–467.
[34]  McPheron BA (2000) Population genetics and cryptic species. In Tan, K.-H., (Ed). Area wide control of fruit flies and other insect pests. Pernerbit Universiti sains Malaysia, Peneng, p. 483–490, 782p.
[35]  Sonvinco A, Manso F, Quesada-Allue LA (1996) Discrimination between the immature stages of Ceratitis capitata and Anastrepha fraterculus (Diptera: Tephritidae) populations by random amplified polymorphic DNA polymerase chain reactiopn. Journal of Economic Entomology 89: 1208–1212.
[36]  Morrow J, Scott L, Congdon B, Yeates D, Frommer M, et al. (2000) Close genetic similarity between two sympatric species of tephritid fruit fly reproductively isolated by mating time. Evolution 54: 899–910.
[37]  Barr NB, Copeland RS, De Meyer M, Masiga D, Kibogo HG, et al. (2006) Molecular diagnostics of economically important Ceratitis fruit fly species (Diptera: Tephritidae) in Africa using PCR and RFLP analyses. Bulletin of Entomological Research 96: 505–521 DOI: 10.1079/BER2006452.
[38]  Ratnasingham S, Hebert PDN (2007) BOLD: The Barcode of Life Data System (www.barcodinglife.org). Molecular Ecology Notes 7: 355–364.
[39]  Hebert PD, Cywinska A, Ball SL, de Waard JR (2003a) Biological identifications through DNA barcodes. Proceedings of the Royal Society B 270: 313–321.
[40]  Hebert PDN, Ratnasingham S, de Waard JR (2003b) Barcoding animal life: cytochrome c oxidase subunit 1 divergences among closely related species. Proc R Soc Lond B Biol Sci 270(Suppl.):S96–S99.
[41]  Felsenstein J (1985) Confidence limits on phylogenies: An approach using the bootstrap. Evolution 39: 783–791.
[42]  Kimura M (1980) A simple method for estimating evolutionary rate of base substitutions through comparative studies of nucleotide sequences. Journal of Molecular Evolution 16: 111–120.
[43]  Tamura K, Peterson D, Peterson N, Stecher G, Nei M, et al. (2011) MEGA 5: Molecular Evolutionary Genetics Analysis using Maximum Likelihood, Evolutionary Distance, and Maximum Parsimony Methods. Molecular Biology and Evolution (In Press).
[44]  Peakall R, Smouse PE (2006) GENALEX 6: genetic analysis in Excel. Population genetic software for teaching and research. Molecular Ecology Notes 6: 288–295.
[45]  Hernandez-ortiz V, Bartolucci AF, Morales-Valles P, Frias D, Selivon D (2012) Cryptic species of the Anastrepha fraterculus complex (Diptera: Tephritidae): A multivariate approach for the recognition of the South American morphotypes. Entomological society of America 105: 305–318.
[46]  Armstrong KF, Ball SL (2011) DNA barcodes for biosecurity: invasive species identification. Phil Trans R Soc B 2005 360: 1813–1823.
[47]  Virgilio M, Jordaens K, Breman FC, Backeljau T, De Meyer M (2012) Identifying Insects with Incomplete DNA Barcode Libraries, African Fruit Flies (Diptera: Tephritidae) as a Test Case. PLoS ONE 7(2):e31581 doi:10.1371/journal.pone.0031581.
[48]  Barr NB (2009) Pathway analysis of Ceratitis capitata (Diptera: Tephritidae) using mitochondrial DNA. Journal of Economical Entomolology 102: 401–411.
[49]  Barr NB, Islam MS, De Meyer M, McPheron BA (2012) Molecular identification of Ceratitis capitata (Diptera: Tephritidae) using DNA sequences of the COI barcode region. Annals of the Entomological Socociety of America 105(2):339–350 DOI: http://dx.doi.org/10.1603/AN11100.
[50]  Muraji M, Nakahara S (2001) Phylogenetic relationships among fruit flies, Bactrocera (Diptera, Tephritidae), based on the mitochondrial rDNA sequences. Insect Mol Biol 10: 549–59.
[51]  Hebert PD, Penton EH, Burns JM, Janzen DH, Hallwachs W (2004a) Ten species in one: DNA barcoding reveals cryptic species in the neotropical skipper butterfly Astraptes fulgerator. Proceedings of the National Academy of Sciences USA 101: 14 812–14 817.
[52]  Smith MA, Woodley NE, Janzen DH, Hallwachs W, Hebert PDN (2006) DNA barcodes reveal cryptic host-specificity within the presumed polyphagous members of a genus of parasitoid flies (Diptera: Tachinidae). Proc Natl Acad Sci U S A 103: 3657–3662.
[53]  Hajibabaei M, Singer GA, Hebert PDN, Hickey DAC (2007) DNA barcoding: how it complements taxonomy, molecular Phylogenetics and population genetics. Science direct 10: 1–6.
[54]  Billah MK, Kimani-Njogu S, Overholt WA, Wharton RA, Wilson DD, et al. (2005) The effect of host larvae on three Psyttalia species (Hymenoptera: Braconidae), parasitoids of fruit nesting flies (Diptera: Tephritidae). Int J Trop Insect Sci 25: 168–175.
[55]  Folmer O, Black M, Hoeh W, Lutz R, Vrijenhoek R (1994) DNA primers for amplification of mitochondrial cytochrome c oxidase subunit I from diverse metazoan invertebrates. Molecular Marine Biological Biotechnology 3: 294–299.
[56]  Baxter MJ (1995) Standardization and Transformation in Principal Component Analysis, with Applications to Archaeometry. Applied Statististics V 44(4):513–527.
[57]  Sokal RR, Rohlf FJ (1995) Biometry: The principles and Practice of Statistics in Biological Research. 3rd Edition. W. H. Freeman & Company, USA. 887 pp.
[58]  Bartlett MS (1950) Tests of significance in factor analysis. British Journal of Psychology 3: 77–85.
[59]  Bartlett MS (1951) A further note on tests of significance. British Journal of Psychology 4: 1–2.
[60]  Zar JH (1999) Biostatistical analysis. 4th edition. Prentice Hall, Upper Saddle River, NJ.
[61]  R Development Core Team (2011) R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. ISBN 3-900051-07-0, URL http://www.R-project.org/.
[62]  Thompson JD, Gibson TJ, Plewniak F, Jeanmougin F, Higgins DG (1997) The ClustalX windows interface: flexible strategies for multiple sequence alignment aided by quality analysis tools. Nucleic Acids Research 24: 4876–4882.
[63]  Saitou N, Nei M (1987) The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol 4: 406–425.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133