Allogeneic stem cell transplantation (SCT) is a potentially curative treatment for patients with hematologic malignancies. Its therapeutic effect is largely dependent on recognition of minor histocompatibility antigens (MiHA) by donor-derived CD8+ T cells. Therefore, monitoring of multiple MiHA-specific CD8+ T cell responses may prove to be valuable for evaluating the efficacy of allogeneic SCT. In this study, we investigated the use of the combinatorial encoding MHC multimer technique to simultaneously detect MiHA-specific CD8+ T cells in peripheral blood of SCT recipients. Feasibility of this approach was demonstrated by applying dual-color encoding MHC multimers for a set of 10 known MiHA. Interestingly, single staining using a fluorochrome- and Qdot-based five-color combination showed comparable results to dual-color staining for most MiHA-specific CD8+ T cell responses. In addition, we determined the potential value of combinatorial encoding MHC multimers in MiHA identification. Therefore, a set of 75 candidate MiHA peptides was predicted from polymorphic genes with a hematopoietic expression profile and further selected for high and intermediate binding affinity for HLA-A2. Screening of a large cohort of SCT recipients resulted in the detection of dual-color encoded CD8+ T cells following MHC multimer-based T cell enrichment and short ex vivo expansion. Interestingly, candidate MiHA-specific CD8+ T cell responses for LAG3 and TLR10 derived polymorphic peptides could be confirmed by genotyping of the respective SNPs. These findings demonstrate the potency of the combinatorial MHC multimer approach in the monitoring of CD8+ T cell responses to known and potential MiHA in limited amounts of peripheral blood from allogeneic SCT recipients.
References
[1]
Kircher B, Stevanovic S, Urbanek M, Mitterschiffthaler A, Rammensee HG, et al. (2002) Induction of HA-1-specific cytotoxic T-cell clones parallels the therapeutic effect of donor lymphocyte infusion. Br J Haematol 117: 935–939.
[2]
Marijt WA, Heemskerk MH, Kloosterboer FM, Goulmy E, Kester MG, et al. (2003) Hematopoiesis-restricted minor histocompatibility antigens HA-1- or HA-2-specific T cells can induce complete remissions of relapsed leukemia. Proc Natl Acad Sci U S A 100: 2742–2747.
[3]
den Haan JM, Meadows LM, Wang W, Pool J, Blokland E, et al. (1998) The minor histocompatibility antigen HA-1: a diallelic gene with a single amino acid polymorphism. Science 279: 1054–1057.
[4]
Hambach L, Vermeij M, Buser A, Aghai Z, van der KT, et al. (2008) Targeting a single mismatched minor histocompatibility antigen with tumor-restricted expression eradicates human solid tumors. Blood 112: 1844–1852.
[5]
de Rijke B, van Horssen-Zoetbrood A, Beekman JM, Otterud B, Maas F, et al. (2005) A frameshift polymorphism in P2X5 elicits an allogeneic cytotoxic T lymphocyte response associated with remission of chronic myeloid leukemia. J Clin Invest 115: 3506–3516.
[6]
Akatsuka Y, Nishida T, Kondo E, Miyazaki M, Taji H, et al. (2003) Identification of a polymorphic gene, BCL2A1, encoding two novel hematopoietic lineage-specific minor histocompatibility antigens. J Exp Med 197: 1489–1500.
[7]
Hadrup SR, Bakker AH, Shu CJ, Andersen RS, van Veluw J, et al. (2009) Parallel detection of antigen-specific T-cell responses by multidimensional encoding of MHC multimers. Nat Methods 6: 520–526.
[8]
Bakker AH, Hoppes R, Linnemann C, Toebes M, Rodenko B, et al. (2008) Conditional MHC class I ligands and peptide exchange technology for the human MHC gene products HLA-A1, -A3, -A11, and -B7. Proc Natl Acad Sci U S A 105: 3825–3830.
[9]
Rodenko B, Toebes M, Hadrup SR, van Esch WJ, Molenaar AM, et al. (2006) Generation of peptide-MHC class I complexes through UV-mediated ligand exchange. Nat Protoc 1: 1120–1132.
[10]
Hadrup SR, Schumacher TN (2010) MHC-based detection of antigen-specific CD8+ T cell responses. Cancer Immunol Immunother 59: 1425–1433.
[11]
Velthuis JH, Unger WW, Abreu JR, Duinkerken G, Franken K, et al. (2010) Simultaneous detection of circulating autoreactive CD8+ T-cells specific for different islet cell-associated epitopes using combinatorial MHC multimers. Diabetes 59: 1721–1730.
[12]
Ofran Y, Kim HT, Brusic V, Blake L, Mandrell M, et al. (2010) Diverse patterns of T-cell response against multiple newly identified human Y chromosome-encoded minor histocompatibility epitopes. Clin Cancer Res 16: 1642–1651.
[13]
Wang ZD, Li D, Huang XJ (2010) Graft-versus-leukemia effects of Wilms' tumor 1 protein-specific cytotoxic T lymphocytes in patients with chronic myeloid leukemia after allogeneic hematopoietic stem cell transplantation. Chin Med J (Engl ) 123: 912–916.
[14]
Keilholz U, Letsch A, Busse A, Asemissen AM, Bauer S, et al. (2009) A clinical and immunologic phase 2 trial of Wilms tumor gene product 1 (WT1) peptide vaccination in patients with AML and MDS. Blood 113: 6541–6548.
[15]
Scheibenbogen C, Letsch A, Thiel E, Schmittel A, Mailaender V, et al. (2002) CD8 T-cell responses to Wilms tumor gene product WT1 and proteinase 3 in patients with acute myeloid leukemia. Blood 100: 2132–2137.
[16]
Bleakley M, Otterud BE, Richardt JL, Mollerup AD, Hudecek M, et al. (2010) Leukemia-associated minor histocompatibility antigen discovery using T-cell clones isolated by in vitro stimulation of naive CD8+ T cells. Blood 115: 4923–4933.
[17]
Hinrichs CS, Borman ZA, Gattinoni L, Yu Z, Burns WR, et al. (2011) Human effector CD8+ T cells derived from naive rather than memory subsets possess superior traits for adoptive immunotherapy. Blood 117: 808–814.
[18]
Brickner AG, Evans AM, Mito JK, Xuereb SM, Feng X, et al. (2006) The PANE1 gene encodes a novel human minor histocompatibility antigen that is selectively expressed in B-lymphoid cells and B-CLL. Blood 107: 3779–3786.
[19]
Ho O, Green WR (2006) Alternative translational products and cryptic T cell epitopes: expecting the unexpected. J Immunol 177: 8283–8289.
[20]
Schwab SR, Li KC, Kang C, Shastri N (2003) Constitutive display of cryptic translation products by MHC class I molecules. Science 301: 1367–1371.
[21]
Yewdell JW, Anton LC, Bennink JR (1996) Defective ribosomal products (DRiPs): a major source of antigenic peptides for MHC class I molecules? J Immunol 157: 1823–1826.
[22]
Warren EH, Vigneron NJ, Gavin MA, Coulie PG, Stroobant V, et al. (2006) An antigen produced by splicing of noncontiguous peptides in the reverse order. Science 313: 1444–1447.
[23]
Vigneron N, Stroobant V, Chapiro J, Ooms A, Degiovanni G, et al. (2004) An antigenic peptide produced by peptide splicing in the proteasome. Science 304: 587–590.
[24]
Engelhard VH, Brickner AG, Zarling AL (2002) Insights into antigen processing gained by direct analysis of the naturally processed class I MHC associated peptide repertoire. Mol Immunol 39: 127–137.
[25]
van Bergen CA, Rutten CE, van der Meijden ED, van Luxemburg-Heijs SA, Lurvink EG, et al. (2010) High-throughput characterization of 10 new minor histocompatibility antigens by whole genome association scanning. Cancer Res 70: 9073–9083.
[26]
Parker KC, Bednarek MA, Coligan JE (1994) Scheme for ranking potential HLA-A2 binding peptides based on independent binding of individual peptide side-chains. J Immunol 152: 163–175.
[27]
Armstrong SA, Staunton JE, Silverman LB, Pieters R, den Boer ML, et al. (2002) MLL translocations specify a distinct gene expression profile that distinguishes a unique leukemia. Nat Genet 30: 41–47.
[28]
Garboczi DN, Hung DT, Wiley DC (1992) HLA-A2-peptide complexes: refolding and crystallization of molecules expressed in Escherichia coli and complexed with single antigenic peptides. Proc Natl Acad Sci U S A 89: 3429–3433.
[29]
Meadows L, Wang W, den Haan JM, Blokland E, Reinhardus C, et al. (1997) The HLA-A*0201-restricted H-Y antigen contains a posttranslationally modified cysteine that significantly affects T cell recognition. Immunity 6: 273–281.
[30]
Wang W, Meadows LR, den Haan JM, Sherman NE, Chen Y, et al. (1995) Human H-Y: a male-specific histocompatibility antigen derived from the SMCY protein. Science 269: 1588–1590.
[31]
van Bergen CA, Kester MG, Jedema I, Heemskerk MH, van Luxemburg-Heijs SA, et al. (2007) Multiple myeloma-reactive T cells recognize an activation-induced minor histocompatibility antigen encoded by the ATP-dependent interferon-responsive (ADIR) gene. Blood 109: 4089–4096.
[32]
Brickner AG, Warren EH, Caldwell JA, Akatsuka Y, Golovina TN, et al. (2001) The immunogenicity of a new human minor histocompatibility antigen results from differential antigen processing. J Exp Med 193: 195–206.
[33]
Pierce RA, Field ED, Mutis T, Golovina TN, Von Kap-Herr C, et al. (2001) The HA-2 minor histocompatibility antigen is derived from a diallelic gene encoding a novel human class I myosin protein. J Immunol 167: 3223–3230.
[34]
den Haan JM, Sherman NE, Blokland E, Huczko E, Koning F, et al. (1995) Identification of a graft versus host disease-associated human minor histocompatibility antigen. Science 268: 1476–1480.