全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
PLOS ONE  2012 

Saturated Alanine Scanning Mutagenesis of the Pneumococcus Competence Stimulating Peptide Identifies Analogs That Inhibit Genetic Transformation

DOI: 10.1371/journal.pone.0044710

Full-Text   Cite this paper   Add to My Lib

Abstract:

Antibiotic resistance is a major challenge to modern medicine. Intraspecies and interspecies dissemination of antibiotic resistance genes among bacteria can occur through horizontal gene transfer. Competence-mediated gene transfer has been reported to contribute to the spread of antibiotic resistance genes in Streptococcus pneumoniae. Induction of the competence regulon is mediated by a 17-amino acid peptide pheromone called the competence stimulating peptide (CSP). Thus, synthetic analogs that competitively inhibit CSPs may reduce horizontal gene transfer. We performed saturated alanine scanning mutagenesis and other amino acid substitutions on CSP1 to screen for analogs that disable genetic transformation in S. pneumoniae. Substitution of the glutamate residue at the first position created analogs that could competitively inhibit CSP1-mediated competence development in a concentration-dependent manner. Additional substitutions of the negatively-charged glutamate residue with amino acids of different charge, acidity and hydrophobicity, as well as enantiomeric D-glutamate, generated analogs that efficiently outcompeted CSP1, suggesting the importance of negative charge and enantiomericity of the first glutamate residue for the function of CSP1. Collectively, these results indicate that glutamate residue at the first position is important for the ability of CSP1 to induce ComD, but is dispensable for the peptide to bind the receptor. Furthermore, these results demonstrate the potential applicability of competitive CSP analogs to control horizontal transfer of antibiotic resistance genes in S. pneumoniae.

References

[1]  Kadioglu A, Weiser JN, Paton JC, Andrew PW (2008) The role of Streptococcus pneumoniae virulence factors in host respiratory colonization and disease. Nat Rev Microbiol 6: 288–301.
[2]  Klugman KP, Lonks JR (2005) Hidden epidemic of macrolide-resistant pneumococci. Emerg Infect Dis 11: 802–807.
[3]  Jacobs MR (2008) Antimicrobial-resistant Streptococcus pneumoniae: trends and management. Expert Rev Anti Infect Ther 6: 619–635.
[4]  Croucher NJ, Walker D, Romero P, Lennard N, Paterson GK, et al. (2009) Role of conjugative elements in the evolution of the multidrug-resistant pandemic clone Streptococcus pneumoniaeSpain23F ST81. J Bacteriol 191: 1480–1489.
[5]  Coker TR, Chan LS, Newberry SJ, Limbos MA, Suttorp MJ, et al. (2010) Diagnosis, microbial epidemiology, and antibiotic treatment of acute otitis media in children: a systematic review. JAMA 304: 2161–2169.
[6]  Linares J, Ardanuy C, Pallares R, Fenoll A (2010) Changes in antimicrobial resistance, serotypes and genotypes in Streptococcus pneumoniae over a 30-year period. Clin Microbiol Infect 16: 402–410.
[7]  Lynch JP, 3rd, Zhanel GG (2010) Streptococcus pneumoniae: epidemiology and risk factors, evolution of antimicrobial resistance, and impact of vaccines. Curr Opin Pulm Med 16: 217–225.
[8]  Jones RN, Jacobs MR, Sader HS (2010) Evolving trends in Streptococcus pneumoniae resistance: implications for therapy of community-acquired bacterial pneumonia. Int J Antimicrob Agents 36: 197–204.
[9]  Dowson CG, Hutchison A, Brannigan JA, George RC, Hansman D, et al. (1989) Horizontal transfer of penicillin-binding protein genes in penicillin-resistant clinical isolates of Streptococcus pneumoniae. Proc Natl Acad Sci U S A 86: 8842–8846.
[10]  Morrison DA, Lee MS (2000) Regulation of competence for genetic transformation in Streptococcus pneumoniae: a link between quorum sensing and DNA processing genes. Res Microbiol 151: 445–451.
[11]  Claverys JP, Martin B, Polard P (2009) The genetic transformation machinery: composition, localization, and mechanism. FEMS Microbiol Rev 33: 643–656.
[12]  Havarstein LS, Gaustad P, Nes IF, Morrison DA (1996) Identification of the streptococcal competence-pheromone receptor. Mol Microbiol 21: 863–869.
[13]  Pestova EV, Havarstein LS, Morrison DA (1996) Regulation of competence for genetic transformation in Streptococcus pneumoniae by an auto-induced peptide pheromone and a two-component regulatory system. Mol Microbiol 21: 853–862.
[14]  Havarstein LS (2010) Increasing competence in the genus Streptococcus. Mol Microbiol 78: 541–544.
[15]  Martin B, Granadel C, Campo N, Henard V, Prudhomme M, et al. (2010) Expression and maintenance of ComD-ComE, the two-component signal-transduction system that controls competence of Streptococcus pneumoniae. Mol Microbiol 75: 1513–1528.
[16]  Luo P, Li HY, Morrison DA (2003) ComX is a unique link between multiple quorum sensing outputs and competence in Streptococcus pneumoniae. Mol Microbiol 50: 623–633.
[17]  Lau GW, Haataja S, Lonetto M, Kensit SE, Marra A, et al. (2001) A functional genomic analysis of type 3 Streptococcus pneumoniae virulence. Mol Microbiol 40: 555–571.
[18]  Bartilson M, Marra A, Christine J, Asundi JS, Schneider WP, et al. (2001) Differential fluorescence induction reveals Streptococcus pneumoniae loci regulated by competence stimulatory peptide. Mol Microbiol 39: 126–135.
[19]  Hava DL, Camilli A (2002) Large-scale identification of serotype 4 Streptococcus pneumoniae virulence factors. Mol Microbiol 45: 1389–1406.
[20]  Guiral S, Mitchell TJ, Martin B, Claverys JP (2005) Competence-programmed predation of noncompetent cells in the human pathogen Streptococcus pneumoniae: genetic requirements. Proc Natl Acad Sci U S A 102: 8710–8715.
[21]  Claverys JP, Martin B, Havarstein LS (2007) Competence-induced fratricide in streptococci. Mol Microbiol 64: 1423–1433.
[22]  Kowalko JE, Sebert ME (2008) The Streptococcus pneumoniae competence regulatory system influences respiratory tract colonization. Infect Immun 76: 3131–3140.
[23]  Pozzi G, Masala L, Iannelli F, Manganelli R, Havarstein LS, et al. (1996) Competence for genetic transformation in encapsulated strains of Streptococcus pneumoniae: two allelic variants of the peptide pheromone. J Bacteriol 178: 6087–6090.
[24]  Whatmore AM, Barcus VA, Dowson CG (1999) Genetic diversity of the streptococcal competence (com) gene locus. J Bacteriol 181: 3144–3154.
[25]  Iannelli F, Oggioni MR, Pozzi G (2005) Sensor domain of histidine kinase ComD confers competence pherotype specificity in Streptoccoccus pneumoniae. FEMS Microbiol Lett 252: 321–326.
[26]  Johnsborg O, Kristiansen PE, Blomqvist T, Havarstein LS (2006) A hydrophobic patch in the competence-stimulating Peptide, a pneumococcal competence pheromone, is essential for specificity and biological activity. J Bacteriol 188: 1744–1749.
[27]  Zhu L, Lau GW (2011) Inhibition of competence development, horizontal gene transfer and virulence in Streptococcus pneumoniae by a modified competence stimulating peptide. PLoS Pathog 7: e1002241.
[28]  Coomaraswamy G (1996) Induction of genetic transformation in Streptococcus pneumoniae by a pheromone peptide and its synthetic analogs. Ph.D. thesis. University of Illinois, Chicago.
[29]  Sung CK, Morrison DA (2005) Two distinct functions of ComW in stabilization and activation of the alternative sigma factor ComX in Streptococcus pneumoniae. J Bacteriol 187: 3052–3061.
[30]  Johnsborg O, Havarstein LS (2009) Regulation of natural genetic transformation and acquisition of transforming DNA in Streptococcus pneumoniae. FEMS Microbiol Rev 33: 627–642.
[31]  Mashburn-Warren L, Morrison DA, Federle MJ (2010) A novel double-tryptophan peptide pheromone controls competence in Streptococcus spp. via an Rgg regulator. Mol Microbiol 78: 589–606.
[32]  Pozzi G, Iannelli F, Oggioni MR, Santagati M, Stefani S (2004) Genetic elements carrying macrolide efflux genes in streptococci. Curr Drug Targets Infect Disord 4: 203–206.
[33]  Shen X, Yang H, Yu S, Yao K, Wang Y, et al. (2008) Macrolide-resistance mechanisms in Streptococcus pneumoniae isolates from Chinese children in association with genes of tetM and integrase of conjugative transposons 1545. Microb Drug Resist 14: 155–161.
[34]  Widdowson CA, Klugman KP (1998) The molecular mechanisms of tetracycline resistance in the pneumococcus. Microb Drug Resist 4: 79–84.
[35]  Dorer MS, Fero J, Salama NR (2010) DNA damage triggers genetic exchange in Helicobacter pylori. PLoS Pathog 6: e1001026.
[36]  Maiques E, Ubeda C, Campoy S, Salvador N, Lasa I, et al. (2006) beta-lactam antibiotics induce the SOS response and horizontal transfer of virulence factors in Staphylococcus aureus. J Bacteriol 188: 2726–2729.
[37]  Prudhomme M, Attaiech L, Sanchez G, Martin B, Claverys JP (2006) Antibiotic stress induces genetic transformability in the human pathogen Streptococcus pneumoniae. Science 313: 89–92.
[38]  Havarstein LS, Hakenbeck R, Gaustad P (1997) Natural competence in the genus Streptococcus: evidence that streptococci can change pherotype by interspecies recombinational exchanges. J Bacteriol 179: 6589–6594.
[39]  Kilian M, Poulsen K, Blomqvist T, Havarstein LS, Bek-Thomsen M, et al. (2008) Evolution of Streptococcus pneumoniae and its close commensal relatives. PLoS One 3: e2683.
[40]  Avery OT, MacLeod CM, McCarty M (1979) Studies on the chemical nature of the substance inducing transformation of pneumococcal types. Inductions of transformation by a desoxyribonucleic acid fraction isolated from pneumococcus type III. J Exp Med 149: 297–326.
[41]  Morrison DA, Baker MF (1979) Competence for genetic transformation in pneumococcus depends on synthesis of a small set of proteins. Nature 282: 215–217.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133