Pantothenate kinase (PanK) phosphorylates pantothenic acid (vitamin B5) and controls the overall rate of coenzyme A (CoA) biosynthesis. Pank1 gene deletion in mice results in a metabolic phenotype where fatty acid oxidation and gluconeogenesis are impaired in the fasted state, leading to mild hypoglycemia. Inactivating mutations in the human PANK2 gene lead to childhood neurodegeneration, but Pank2 gene inactivation in mice does not elicit a phenotype indicative of the neuromuscular symptoms or brain iron accumulation that accompany the human disease. Pank1/Pank2 double knockout (dKO) mice were derived to determine if the mild phenotypes of the single knockout mice are due to the ability of the two isoforms to compensate for each other in CoA biosynthesis. Postnatal development was severely affected in the dKO mice. The dKO pups developed progressively severe hypoglycemia and hyperketonemia by postnatal day 10 leading to death by day 17. Hyperketonemia arose from impaired whole-body ketone utilization illustrating the requirement for CoA in energy generation from ketones. dKO pups had reduced CoA and decreased fatty acid oxidation coupled with triglyceride accumulation in liver. dKO hepatocytes could not maintain the NADH levels compared to wild-type hepatocytes. These results revealed an important link between CoA and NADH levels, which was reflected by deficiencies in hepatic oleate synthesis and gluconeogenesis. The data indicate that PanK1 and PanK2 can compensate for each other to supply tissue CoA, but PanK1 is more important to CoA levels in liver whereas PanK2 contributes more to CoA synthesis in the brain.
References
[1]
Leonardi R, Zhang Y-M, Rock CO, Jackowski S (2005) Coenzyme A: Back in action. Prog Lipid Res 44: 125–153.
[2]
Rock CO, Karim MA, Zhang Y-M, Jackowski S (2002) The murine Pank1 gene encodes two differentially regulated pantothenate kinase isozymes. Gene 291: 35–43.
[3]
Zhou B, Westaway SK, Levinson B, Johnson MA, Gitschier J, et al. (2001) A novel pantothenate kinase gene (PANK2) is defective in Hallervorden-Spatz syndrome. Nat Genet 28: 345–349.
[4]
Zhang Y-M, Rock CO, Jackowski S (2005) Feedback regulation of murine pantothenate kinase 3 by coenzyme A and coenzyme A thioesters. J Biol Chem 280: 32594–32601.
[5]
Olzhausen J, Schubbe S, Schuller HJ (2009) Genetic analysis of coenzyme A biosynthesis in the yeast Saccharomyces cerevisiae: identification of a conditional mutation in the pantothenate kinase gene CAB1. Curr Genet 55: 163–173.
[6]
Calder RB, Williams RSB, Ramaswamy G, Rock CO, Campbell E, et al. (1999) Cloning and characterization of a eukaryotic pantothenate kinase gene (panK) from Aspergillus nidulans. J Biol Chem 274: 2014–2020.
[7]
Afshar K, Gonczy P, DiNardo S, Wasserman SA (2001) fumble encodes a pantothenate kinase homolog required for proper mitosis and meiosis in Drosophila melanogaster. Genetics 157: 1267–1276.
[8]
Zhang YM, Chohnan S, Virga KG, Stevens RD, Ilkayeva OR, et al. (2007) Chemical knockout of pantothenate kinase reveals the metabolic and genetic program responsible for hepatic coenzyme A homeostasis. Chem Biol 14: 291–302.
[9]
Leonardi R, Rehg JE, Rock CO, Jackowski S (2010) Pantothenate kinase 1 is required to support the metabolic transition from the fed to the fasted state. PLoS ONE 5: e11107.
[10]
Leonardi R, Rock CO, Jackowski S, Zhang Y-M (2007) Activation of human mitochondrial pantothenate kinase 2 by palmitoylcarnitine. Proc Natl Acad Sci U S A 104: 1494–1499.
[11]
Leonardi R, Zhang YM, Lykidis A, Rock CO, Jackowski S (2007) Localization and regulation of mouse pantothenate kinase 2. FEBS Lett 581: 4639–4644.
[12]
Kuo YM, Duncan JL, Westaway SK, Yang H, Nune G, et al. (2005) Deficiency of pantothenate kinase 2 (Pank2) in mice leads to retinal degeneration and azoospermia. Hum Mol Genet 14: 49–57.
[13]
Strauss E, Kinsland C, Ge Y, McLafferty FW, Begley TP (2001) Phosphopantothenoylcysteine synthetase from Escherichia coli. Identification and characterization of the last unidentified coenzyme A biosynthetic enzyme in bacteria. J Biol Chem 276: 13513–13516.
[14]
Zhang Y-M, Rock CO, Jackowski S (2006) Biochemical properties of human pantothenate kinase 2 isoforms and mutations linked to pantothenate kinase-associated neurodegeneration. J Biol Chem 281: 107–114.
[15]
Hong BS, Senisterra G, Rabeh WM, Vedadi M, Leonardi R, et al. (2007) Crystal structures of human pantothenate kinases. Insights into allosteric regulation and mutations linked to a neurodegeneration disorder. J Biol Chem 282: 27984–27993.
[16]
Kotzbauer PT, Truax AC, Trojanowski JQ, Lee VMY (2005) Altered neuronal mitochondrial coenzyme A synthesis in neurodegeneration with brain iron accumulation caused by abnormal processing, stability, and catalytic activity of mutant pantothenate kinase 2. J Neurosci 25: 689–698.
[17]
Kuo YM, Hayflick SJ, Gitschier J (2007) Deprivation of pantothenic acid elicits a movement disorder and azoospermia in a mouse model of pantothenate kinase-associated neurodegeneration. J Inherit Metab Dis 30: 310–317.
[18]
Ibdah JA, Tein I, Dionisi-Vici C, Bennett MJ, Ijlst L, et al. (1998) Mild trifunctional protein deficiency is associated with progressive neuropathy and myopathy and suggests a novel genotype-phenotype correlation. J Clin Invest 102: 1193–1199.
[19]
Reilly SJ, Tillander V, Ofman R, Alexson SE, Hunt MC (2008) The nudix hydrolase 7 is an acyl-CoA diphosphatase involved in regulating peroxisomal coenzyme A homeostasis. J Biochem 144: 655–663.
[20]
Ofman R, Speijer D, Leen R, Wanders RJ (2006) Proteomic analysis of mouse kidney peroxisomes: identification of RP2p as a peroxisomal nudix hydrolase with acyl-CoA diphosphatase activity. Biochem J 393: 537–543.
[21]
Gasmi L, McLennan AG (2001) The mouse Nudt7 gene encodes a peroxisomal nudix hydrolase specific for coenzyme A and its derivatives. Biochem J 357: 33–38.
[22]
Alaynick WA, Kondo RP, Xie W, He W, Dufour CR, et al. (2007) ERRgamma directs and maintains the transition to oxidative metabolism in the postnatal heart. Cell Metab 6: 13–24.
[23]
Hertz L, Dienel GA (2002) Energy metabolism in the brain. Int Rev Neurobiol 51: 1–102.
[24]
Edmond J, Robbins RA, Bergstrom JD, Cole RA, de VJ (1987) Capacity for substrate utilization in oxidative metabolism by neurons, astrocytes, and oligodendrocytes from developing brain in primary culture. J Neurosci Res 18: 551–561.
[25]
Denne SC, Kalhan SC (1986) Glucose carbon recycling and oxidation in human newborns. Am J Physiol 251: E71–E77.
[26]
Cotter DG, d’Avignon DA, Wentz AE, Weber ML, Crawford PA (2011) Obligate role for ketone body oxidation in neonatal metabolic homeostasis. J Biol Chem 286: 6902–6910.
[27]
Pettit FH, Pelley JW, Reed LJ (1975) Regulation of pyruvate dehydrogenase kinase and phosphatase by acetyl-CoA/CoA and NADH/NAD ratios. Biochem Biophys Res Commun 65: 575–582.
[28]
Lin SJ, Ford E, Haigis M, Liszt G, Guarente L (2004) Calorie restriction extends yeast life span by lowering the level of NADH. Genes Dev 18: 12–16.
[29]
Hallows WC, Lee S, Denu JM (2006) Sirtuins deacetylate and activate mammalian acetyl-CoA synthetases. Proc Natl Acad Sci U S A 103: 10230–10235.
[30]
Hirschey MD, Shimazu T, Capra JA, Pollard KS, Verdin E (2011) SIRT1 and SIRT3 deacetylate homologous substrates: AceCS1,2 and HMGCS1,2. Aging (Albany NY) 3: 635–642.
[31]
Herranz D, Serrano M (2010) SIRT1: recent lessons from mouse models. Nat Rev Cancer 10: 819–823.
[32]
Zhao S, Xu W, Jiang W, Yu W, Lin Y, et al. (2010) Regulation of cellular metabolism by protein lysine acetylation. Science 327: 1000–1004.
[33]
Siudeja K, Srinivasan B, Xu L, Rana A, de JJ, et al. (2011) Impaired Coenzyme A metabolism affects histone and tubulin acetylation in Drosophila and human cell models of pantothenate kinase associated neurodegeneration. EMBO Mol Med 3: 1–12.
[34]
Cai L, Tu BP (2011) On Acetyl-CoA as a Gauge of Cellular Metabolic State. Cold Spring Harb Symp Quant Biol. (in press).
[35]
Ghosh S, George S, Roy U, Ramachandran D, Kolthur-Seetharam U (2010) NAD: a master regulator of transcription. Biochim Biophys Acta 1799: 681–693.
[36]
Johnson MA, Kuo YM, Westaway SK, Parker SM, Ching KH, et al. (2004) Mitochondrial localization of human PANK2 and hypotheses of secondary iron accumulation in pantothenate kinase-associated neurodegeneration. Ann N Y Acad Sci 1012: 282–298.
[37]
Arisi I, D’Onofrio M, Brandi R, Felsani A, Capsoni S, et al. (2011) Gene expression biomarkers in the brain of a mouse model for Alzheimer’s disease: mining of microarray data by logic classification and feature selection. J Alzheimers Dis 24: 721–738.
[38]
Winer J, Jung CK, Shackel I, Williams PM (1999) Development and validation of real-time quantitative reverse transcriptase-polymerase chain reaction for monitoring gene expression in cardiac myocytes in vitro. Anal Biochem 270: 41–49.
[39]
Bradford MM (1976) A rapid and sensitive method for quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem 72: 248–254.
[40]
Ivanova PT, Milne SB, Byrne MO, Xiang Y, Brown HA (2007) Glycerophospholipid identification and quantitation by electrospray ionization mass spectrometry. Methods Enzymol 432: 21–57.
[41]
Adams SH, Lin X, Yu XX, Odle J, Drackley JK (1997) Hepatic fatty acid metabolism in pigs and rats: major differences in endproducts, O2 uptake, and ?-oxidation. Am J Physiol 272: R1641–R1646.
[42]
Bligh EG, Dyer WJ (1959) A rapid method of total lipid extraction and purification. Can J Biochem Physiol 37: 911–917.