全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
PLOS ONE  2012 

Extracellular Vesicles from Parasitic Helminths Contain Specific Excretory/Secretory Proteins and Are Internalized in Intestinal Host Cells

DOI: 10.1371/journal.pone.0045974

Full-Text   Cite this paper   Add to My Lib

Abstract:

The study of host-parasite interactions has increased considerably in the last decades, with many studies focusing on the identification of parasite molecules (i.e. surface or excretory/secretory proteins (ESP)) as potential targets for new specific treatments and/or diagnostic tools. In parallel, in the last few years there have been significant advances in the field of extracellular vesicles research. Among these vesicles, exosomes of endocytic origin, with a characteristic size ranging from 30–100 nm, carry several atypical secreted proteins in different organisms, including parasitic protozoa. Here, we present experimental evidence for the existence of exosome-like vesicles in parasitic helminths, specifically the trematodes Echinostoma caproni and Fasciola hepatica. These microvesicles are actively released by the parasites and are taken up by host cells. Trematode extracellular vesicles contain most of the proteins previously identified as components of ESP, as confirmed by proteomic, immunogold labeling and electron microscopy studies. In addition to parasitic proteins, we also identify host proteins in these structures. The existence of extracellular vesicles explains the secretion of atypical proteins in trematodes, and the demonstration of their uptake by host cells suggests an important role for these structures in host-parasite communication, as described for other infectious agents.

References

[1]  Hotez PJ, Brindley PJ, Bethony JM, King CH, Pearce EJ, et al. (2008) Helminth infections: The great neglected tropical diseases. J Clin Invest 118 (4) 1311–1321.
[2]  Toledo R, Bernal MD, Marcilla A (2011) Proteomics of foodborne trematodes. J Proteomics 74 (9) 1485–1503.
[3]  Toledo R, Fried B (2005) Echinostomes as experimental models for interactions between adult parasites and vertebrate hosts. Trends Parasitol 21 (6) 251–254.
[4]  Toledo R, Esteban JG, Fried B (2012) Current status of food-borne trematode infections. Eur J Clin Microbiol Infect Dis
[5]  Robinson MW, Dalton JP (2009) Zoonotic helminth infections with particular emphasis on fasciolosis and other trematodiases. Philos Trans R Soc Lond B Biol Sci 364 (1530) 2763–2776.
[6]  Hewitson JP, Grainger JR, Maizels RM (2009) Helminth immunoregulation: The role of parasite secreted proteins in modulating host immunity. Mol Biochem Parasitol 167 (1) 1–11.
[7]  Marcilla A, Garg G, Bernal D, Ranganathan S, Forment J, et al. (2012) The transcriptome analysis of Strongyloides stercoralis L3i larvae reveals targets for intervention in a neglected disease. PLoS Negl Trop Dis 6 (2) e1513.
[8]  Robinson MW, Hutchinson AT, Donnelly S, Dalton JP (2010) Worm secretory molecules are causing alarm. Trends Parasitol 26 (8) 371–372.
[9]  Threadgold LT (1963) The tegument and associated structures in Fasciola hepatica. Quart J Micr Sci 10 (4) 505–512.
[10]  Andresen K, Simonsen PE, Andersen BJ, Birch-Andersen A (1989) Echinostoma caproni in mice: Shedding of antigens from the surface of an intestinal trematode. Int J Parasitol 19 (1) 111–118.
[11]  Thery C (2011) Exosome EXPLOSION!. Scientist 25 (7) 36–40.
[12]  Mathivanan S, Fahner CJ, Reid GE, Simpson RJ (2012) ExoCarta 2012: Database of exosomal proteins, RNA and lipids. Nucleic Acids Res 40 (Database issue) D1241–4.
[13]  Mathivanan S, Ji H, Simpson RJ (2010) Exosomes: Extracellular organelles important in intercellular communication. J Proteomics 73 (10) 1907–1920.
[14]  Simons M, Raposo G (2009) Exosomes–vesicular carriers for intercellular communication. Curr Opin Cell Biol 21 (4) 575–581.
[15]  Bobrie A, Colombo M, Raposo G, Thery C (2011) Exosome secretion: Molecular mechanisms and roles in immune responses. Traffic
[16]  Couzin J (2005) Cell biology: The ins and outs of exosomes. Science 308 (5730) 1862–1863.
[17]  Silverman JM, Clos J, Horakova E, Wang AY, Wiesgigl M, et al. (2010) Leishmania exosomes modulate innate and adaptive immune responses through effects on monocytes and dendritic cells. J Immunol 185 (9) 5011–5022.
[18]  Silverman JM, Reiner NE (2011) Exosomes and other microvesicles in infection biology: Organelles with unanticipated phenotypes. Cell Microbiol 13 (1) 1–9 DOI: 10 1111/j 1462-5822 2010 01537 x.
[19]  Sotillo J, Valero ML, Sanchez Del Pino MM, Fried B, Esteban JG, et al. (2010) Excretory/secretory proteome of the adult stage of Echinostoma caproni. Parasitol Res 107 (3) 691–697.
[20]  Toledo R, Espert A, Carpena I, Munoz-Antoli C, Esteban JG (2003) An experimental study of the reproductive success of Echinostoma friedi (trematoda: Echinostomatidae) in the golden hamster. Parasitology 126 (Pt 5) 433–441.
[21]  Simpson RJ, Lim JW, Moritz RL, Mathivanan S (2009) Exosomes: Proteomic insights and diagnostic potential. Expert Rev Proteomics 6 (3) 267–283.
[22]  Lasser C, Eldh M, Lotvall J (2012) Isolation and characterization of RNA-containing exosomes. J Vis Exp (59) e3037 doi(59): e3037.
[23]  Acosta D, Cancela M, Piacenza L, Roche L, Carmona C, et al. (2008) Fasciola hepatica leucine aminopeptidase, a promising candidate for vaccination against ruminant fasciolosis. Mol Biochem Parasitol 158 (1) 52–64.
[24]  Sotillo J, Valero L, Del Pino MMS, Fried B, Esteban JG, et al. (2008) Identification of antigenic proteins from Echinostoma caproni (trematoda) recognized by mouse immunoglobulins M, A and G using an immunoproteomic approach. Parasite Immunol 30 (5) 271–279.
[25]  Shilov IV, Seymour SL, Patel AA, Loboda A, Tang WH, et al. (2007) The paragon algorithm, a next generation search engine that uses sequence temperature values and feature probabilities to identify peptides from tandem mass spectra. Mol Cell Proteomics 6 (9) 1638–1655.
[26]  Bernal D, Carpena I, Espert AM, De la Rubia JE, Esteban JG, et al. (2006) Identification of proteins in excretory/secretory extracts of Echinostoma friedi (Trematoda) from chronic and acute infections. Proteomics 6 (9) 2835–2843.
[27]  Guillou F, Roger E, Mone Y, Rognon A, Grunau C, et al. (2007) Excretory-secretory proteome of larval schistosoma mansoni and Echinostoma caproni, two parasites of biomphalaria glabrata. Mol Biochem Parasitol 155 (1) 45–56.
[28]  Marcilla A, De la Rubia JE, Sotillo J, Bernal D, Carmona C, et al. (2008) Leucine aminopeptidase is an immunodominant antigen of Fasciola hepatica excretory and secretory products in human infections. Clin Vaccine Immunol 15 (1) 95–100.
[29]  Robinson MW, Menon R, Donnelly SM, Dalton JP, Ranganathan S (2009) An integrated transcriptomics and proteomics analysis of the secretome of the helminth pathogen Fasciola hepatica: Proteins associated with invasion and infection of the mammalian host. Mol Cell Proteomics 8 (8) 1891–1907.
[30]  Wilson RA, Wright JM, de Castro-Borges W, Parker-Manuel SJ, Dowle AA, et al. (2011) Exploring the Fasciola hepatica tegument proteome. Int J Parasitol 41 (13–14) 1347–1359.
[31]  Silverman JM, Clos J, de'Oliveira CC, Shirvani O, Fang Y, et al. (2010) An exosome-based secretion pathway is responsible for protein export from Leishmania and communication with macrophages. J Cell Sci 123 (Pt 6) 842–852.
[32]  Liegeois S, Benedetto A, Garnier JM, Schwab Y, Labouesse M (2006) The V0-ATPase mediates apical secretion of exosomes containing hedgehog-related proteins in Caenorhabditis elegans. J Cell Biol 173 (6) 949–961.
[33]  Jolodar A, Fischer P, Bergmann S, Buttner DW, Hammerschmidt S, et al. (2003) Molecular cloning of an alpha-enolase from the human filarial parasite Onchocerca volvulus that binds human plasminogen. Biochim Biophys Acta 1627 (2–3) 111–120.
[34]  Bernal D, de la Rubia JE, Carrasco-Abad AM, Toledo R, Mas-Coma S, et al. (2004) Identification of enolase as a plasminogen-binding protein in excretory-secretory products of Fasciola hepatica. FEBS Lett 563 (1–3) 203–206.
[35]  Marcilla A, Perez-Garcia A, Espert A, Bernal D, Munoz-Antoli C, et al. (2007) Echinostoma caproni: Identification of enolase in excretory/secretory products, molecular cloning, and functional expression. Exp Parasitol 117 (1) 57–64.
[36]  Liu F, Cui SJ, Hu W, Feng Z, Wang ZQ, et al. (2009) Excretory/secretory proteome of the adult developmental stage of human blood fluke, Schistosoma japonicum. Mol Cell Proteomics 8 (6) 1236–1251.
[37]  Wang X, Chen W, Hu F, Deng C, Zhou C, et al. (2011) Clonorchis sinensis enolase: Identification and biochemical characterization of a glycolytic enzyme from excretory/secretory products. Mol Biochem Parasitol 177 (2) 135–142.
[38]  de la Torre-Escudero E, Manzano-Roman R, Perez-Sanchez R, Siles-Lucas M, Oleaga A (2010) Cloning and characterization of a plasminogen-binding surface-associated enolase from Schistosoma bovis. Vet Parasitol 173 (1–2) 76–84.
[39]  Toledo A, Coleman JL, Kuhlow CJ, Crowley JT, Benach JL (2012) The enolase of Borrelia burgdorferi is a plasminogen receptor released in outer membrane vesicles. Infect Immun 80 (1) 359–368.
[40]  Medzhitov R (2007) Recognition of microorganisms and activation of the immune response. Nature 449 (7164) 819–826.
[41]  Giuliani A, Pirri G, Rinaldi AC (2010) Antimicrobial peptides: The LPS connection. Methods Mol Biol 618: 137–154.
[42]  Dalton JP, Brindley PJ, Knox DP, Brady CP, Hotez PJ, et al. (2003) Helminth vaccines: From mining genomic information for vaccine targets to systems used for protein expression. Int J Parasitol 33 (5–6) 621–640.
[43]  Stack C, Dalton JP, Robinson MW (2011) The phylogeny, structure and function of trematode cysteine proteases, with particular emphasis on the Fasciola hepatica cathepsin L family. Adv Exp Med Biol 712: 116–135.
[44]  Geiger A, Hirtz C, Becue T, Bellard E, Centeno D, et al. (2010) Exocytosis and protein secretion in Trypanosoma. BMC Microbiol 10: 20.
[45]  Lenassi M, Cagney G, Liao M, Vaupotic T, Bartholomeeusen K, et al. (2010) HIV nef is secreted in exosomes and triggers apoptosis in bystander CD4+ T cells. Traffic 11 (1) 110–122.
[46]  Izquierdo-Useros N, Puertas MC, Borras FE, Blanco J, Martinez-Picado J (2011) Exosomes and retroviruses: The chicken or the egg? Cell Microbiol 13 (1) 10–17.
[47]  Oliveira DL, Freire-de-Lima CG, Nosanchuk JD, Casadevall A, Rodrigues ML, et al. (2010) Extracellular vesicles from Cryptococcus neoformans modulate macrophage functions. Infect Immun 78 (4) 1601–1609.
[48]  Rodrigues ML, Djordjevic JT (2011) Unravelling secretion in Cryptococcus neoformans: More than one way to skin a cat. Mycopathologia
[49]  Gehrmann U, Qazi KR, Johansson C, Hultenby K, Karlsson M, et al. (2011) Nanovesicles from Malassezia sympodialis and host exosomes induce cytokine responses-novel mechanisms for host-microbe interactions in atopic eczema. PLoS One 2011+ADs-6 (7) E21480 Epub 6(7): e21480.
[50]  Clayton C, Estevez A (2011) The exosomes of trypanosomes and other protists. Adv Exp Med Biol 702: 39–49.
[51]  Tian T, Wang Y, Wang H, Zhu Z, Xiao Z (2010) Visualizing of the cellular uptake and intracellular trafficking of exosomes by live-cell microscopy. J Cell Biochem 111 (2) 488–496.
[52]  Morphew RM, Wright HA, LaCourse EJ, Woods DJ, Brophy PM (2007) Comparative proteomics of excretory-secretory proteins released by the liver fluke Fasciola hepatica in sheep host bile and during in vitro culture ex host. Mol Cell Proteomics 6: 963–972.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133