全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
PLOS ONE  2012 

Modeling and Experimental Analyses Reveals Signaling Plasticity in a Bi-Modular Assembly of CD40 Receptor Activated Kinases

DOI: 10.1371/journal.pone.0039898

Full-Text   Cite this paper   Add to My Lib

Abstract:

Depending on the strength of signal dose, CD40 receptor (CD40) controls ERK-1/2 and p38MAPK activation. At low signal dose, ERK-1/2 is maximally phosphorylated but p38MAPK is minimally phosphorylated; as the signal dose increases, ERK-1/2 phosphorylation is reduced whereas p38MAPK phosphorylation is reciprocally enhanced. The mechanism of reciprocal activation of these two MAPKs remains un-elucidated. Here, our computational model, coupled to experimental perturbations, shows that the observed reciprocity is a system-level behavior of an assembly of kinases arranged in two modules. Experimental perturbations with kinase inhibitors suggest that a minimum of two trans-modular negative feedback loops are required to reproduce the experimentally observed reciprocity. The bi-modular architecture of the signaling pathways endows the system with an inherent plasticity which is further expressed in the skewing of the CD40-induced productions of IL-10 and IL-12, the respective anti-inflammatory and pro-inflammatory cytokines. Targeting the plasticity of CD40 signaling significantly reduces Leishmania major infection in a susceptible mouse strain. Thus, for the first time, using CD40 signaling as a model, we show how a bi-modular assembly of kinases imposes reciprocity to a receptor signaling. The findings unravel that the signalling plasticity is inherent to a reciprocal system and that the principle can be used for designing a therapy.

References

[1]  Egen JG, Allison JP (2002) Cytotoxic T lymphocyte antigen-4 accumulation in the immunological synapse is regulated by TCR signal strength. Immunity 16: 23–35.
[2]  Gett AV, Sallusto F, Lanzavecchia A, Geginat J (2003) T cell fitness determined by signal strength. Nat Immunol 4: 355–360.
[3]  Grewal IS, Flavell RA (1998) CD40 and CD154 in cell-mediated immunity. Annu Rev Immunol 16: 111–135.
[4]  Eliopoulos AG, Davies C, Knox PG, Gallagher NJ, Afford SC, et al. (2000) CD40 induces apoptosis in carcinoma cells through activation of cytotoxic ligands of the tumor necrosis factor superfamily. Mol Cell Biol 20: 5503–5515.
[5]  Mathur RK, Awasthi A, Wadhone P, Ramanamurthy B, Saha B (2004) Reciprocal CD40 signals through p38MAPK and ERK-1/2 induce counteracting immune responses. Nat Med 10: 540–544.
[6]  Widemann C, Gibson S, Jarpe BM, Lohson LG (1999) Mitogen-activated protein kinase: conservation of a three-kinase module from yeast to human. Physiol Rev 79: 143–180.
[7]  Davis JR (1993) The Mitogen-activated Protein Kinase Signal Transduction Pathway 268: 14553–14556.
[8]  Marshall CJ (1994) MAP kinase kinase kinase, MAP kinase kinase and MAP kinase. Curr Opin Genet Dev 4: 82–89.
[9]  Rub A, Dey R, Jadhav M, Kamat R, Chakkaramakkil S, et al. (2009) Cholesterol depletion associated with Leishmania major infection alters macrophage CD40 signalosome composition and effector function. Nat. Immunol. 10: 273–280.
[10]  Foey AD, Feldmann M, Brennan FM (2001) CD40 ligation induces macrophage IL-10 and TNF-α production: differential use of PI3-K AND p42/44 MAPK-pathways. Cytokine 16: 131–142.
[11]  Purkerson JM, Parker DC (1998) Differential coupling of membrane Ig and CD40 to the extracellularly regulated kinase signaling pathway. J Immunol 160: 2121–2129.
[12]  Goldstein B, Faeder JR, Hlavacek WS, Blinov ML, Redondo A, et al. (2002) Modeling the early signaling events mediated by FcεRI. Molecular Immunology 1137: 17.
[13]  Nandan D, Yi T, Lopez M, Lai C, Reiner NE (2002) Leishmania EF-1alpha activates the Src homology 2 domain containing tyrosine phosphatase SHP-1 leading to macrophage deactivation. J Biol Chem 277: 50190–50197.
[14]  Gutenkunst RN, Waterfall JJ, Casey FP, Brown KS, Myers CR, et al. (2007) Universally sloppy parameter sensitivities in systems biology models. PLoS Comput Biol 3: 1871–1878.
[15]  Sudan R, Srivastava N, Pandey SP, Majumdar S, Saha B (2012) Reciprocal regulation of protein kinase C isoforms results in differential cellular responsiveness. J Immunol 188: 2328–2337.
[16]  Srivastava N, Sudan R, Saha B (2011) CD40-Modulated Dual-Specificity Phosphatases MAPK Phosphatase (MKP)-1 and MKP-3 Reciprocally Regulate Leishmania major Infection. J Immunol 186: 5863–5872.
[17]  Santhosh C V, Tamhane MC, Kamat RH, Patel VV, Mukhopadhyaya R (2008) A lentiviral vector with novel multiple cloning sites: stable transgene expression in vitro and in vivo. Biochem Biophys Res Commun 371: 546–550.
[18]  Hatakeyama M, Kimura S, Naka T, Kawasaki T, Yumoto N, et al. (2003) A computational model on the modulation of mitogen-activated protein kinase (MAPK) and Akt pathways in heregulin-induced ErbB signalling. Biochem J. 373: 451–463.
[19]  Shankaran H, Ippolito DL, Chrisler WB, Resat H, Bollinger N, et al. (2009) Rapid and sustained nuclear-cytoplasmic ERK oscillations induced by epidermal growth factor. Mol Syst Biol 5: 332.
[20]  Shin SY, Rath O, Choo SM, Fee F, McFerran B, et al. (2009) Positive- and negative-feedback regulations coordinate the dynamic behavior of the Ras-Raf-MEK-ERK signal transduction pathway. J Cell Sci 122: 425–35.
[21]  Hoops S, Sahle S, Gauges R, Lee C, Pahle J, et al. (2006) COPASI–a COmplex PAthway SImulator. Bioinformatics 22: 3067–3074.
[22]  Zi Z, Zheng Y, Rundell AE, Klipp E (2008) SBML-SAT: a systems biology markup language (SBML) based sensitivity analysis tool. BMC Bioinformatics 9: 342.
[23]  Zhang Y, Rundell A (2006) Comparative study of parameter sensitivity analyses of the TCR activated Erk-MAPK signalling pathway. Syst Biol (Stevenage) 153: 201–211.
[24]  Chaudhri VK, Kumar D, Misra M, Dua R, Rao KV (2010) Integration of a phosphatase cascade with the mitogen-activated protein kinase pathway provides for a novel signal processing function. J Biol Chem 285: 1296–310.
[25]  Yanagi S, Sugawara H, Kurosaki M, Sabe H, Yamamura H, et al. (1996) CD45 modulates phosphorylation of both autophosphorylation and negative regulatory tyrosines of Lyn in B cells. J Biol Chem 271: 30487–30492.
[26]  Segel HI (1993) Enzyme kinetics: behavior and analysis of rapid equilibrium and steady state: Willy Press.
[27]  Kholodenko BN (2000) Negative feedback and ultrasensitivity can bring about oscillations in the mitogen-activated protein kinase cascades. Eur J Biochem 267: 1583–88.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133