Cytokines play an important role in ischemic injury and repair. However, little is known about their prognostic value in cardiovascular disease. The aim of this study was to investigate the prognostic importance of chemokines CCL3/MIP-1α, CCL5/RANTES and CCL18/PARC for the risk of future cardiovascular events in patients with acute coronary syndromes (ACS). Baseline levels of CCL3/MIP-1α, CCL5/RANTES and CCL18/PARC were determined in ACS patients from the Bad Nauheim ACS II registry (n = 609). During the following 200 days, patients were monitored for the occurrence of fatal and non-fatal cardiovascular events. Patients with CCL3/MIP1α, CCL5/RANTES and CCL18/PARC concentrations in the highest tertile were associated with an increased risk of a fatal event during follow-up (HR: 2.19, 95%CI: 1.04–4.61 for CCL3/MIP1α, HR: 3.45, 95%CI: 1.54–7.72 for CCL5/RANTES and HR: 3.14, 95%CI: 1.33–7.46 for CCL18/PARC). This risk was highest for patients with all three biomarkers concentrations in the upper tertile (HR: 2.52, 95%CI: 1.11–5.65). Together with known risk predictors of cardiovascular events, CCL3/MIP-1α, CCL5/RANTES and CCL18/PARC combined improved the c-statistics from 0.74 to 0.81 (p = 0.007). In conclusion, CCL3/MIP-1α, CCL5/RANTES and CCL18/PARC are independently associated with the risk of short-term mortality in ACS patients. Combining all three biomarkers further increased their prognostic value.
References
[1]
Lopez AD, Mathers CD, Ezzati M, Jamison DT, Murray CJ (2006) Global and regional burden of disease and risk factors, 2001: systematic analysis of population health data. Lancet 367: 1747–1757.
[2]
Boersma E, Pieper KS, Steyerberg EW, Wilcox RG, Chang WC, et al. (2000) Predictors of outcome in patients with acute coronary syndromes without persistent ST-segment elevation. Results from an international trial of 9461 patients. The PURSUIT Investigators. Circulation 101: 2557–2567.
[3]
Eagle KA, Lim MJ, Dabbous OH, Pieper KS, Goldberg RJ, et al. (2004) A validated prediction model for all forms of acute coronary syndrome: estimating the risk of 6-month postdischarge death in an international registry. Jama 291: 2727–2733.
[4]
Morrow DA, Rifai N, Antman EM, Weiner DL, McCabe CH, et al. (1998) C-reactive protein is a potent predictor of mortality independently of and in combination with troponin T in acute coronary syndromes: a TIMI 11A substudy. Thrombolysis in Myocardial Infarction. J Am Coll Cardiol 31: 1460–1465.
[5]
Rebuzzi AG, Quaranta G, Liuzzo G, Caligiuri G, Lanza GA, et al. (1998) Incremental prognostic value of serum levels of troponin T and C-reactive protein on admission in patients with unstable angina pectoris. Am J Cardiol 82: 715–719.
[6]
Charo IF, Taubman MB (2004) Chemokines in the pathogenesis of vascular disease. Circ Res 95: 858–866.
[7]
Weber C (2005) Platelets and chemokines in atherosclerosis: partners in crime. Circ Res 96: 612–616.
[8]
Kraaijeveld AO, de Jager SC, van Berkel TJ, Biessen EA, Jukema JW (2007) Chemokines and Atherosclerotic Plaque Progression: Towards Therapeutic Targeting? Curr Pharm Des 13: 1039–1052.
[9]
Weber C, Schober A, Zernecke A (2004) Chemokines: key regulators of mononuclear cell recruitment in atherosclerotic vascular disease. Arterioscler Thromb Vasc Biol 24: 1997–2008.
[10]
Wilcox JN, Nelken NA, Coughlin SR, Gordon D, Schall TJ (1994) Local expression of inflammatory cytokines in human atherosclerotic plaques. J Atheroscler Thromb 1 Suppl 1S10–13.
[11]
Mach F, Sauty A, Iarossi AS, Sukhova GK, Neote K, et al. (1999) Differential expression of three T lymphocyte-activating CXC chemokines by human atheroma-associated cells. J Clin Invest 104: 1041–1050.
[12]
Reape TJ, Rayner K, Manning CD, Gee AN, Barnette MS, et al. (1999) Expression and cellular localization of the CC chemokines PARC and ELC in human atherosclerotic plaques. Am J Pathol 154: 365–374.
[13]
Hagg DA, Olson FJ, Kjelldahl J, Jernas M, Thelle DS, et al. (2009) Expression of chemokine (C-C motif) ligand 18 in human macrophages and atherosclerotic plaques. Atherosclerosis 204: e15–20.
[14]
Krohn R, Raffetseder U, Bot I, Zernecke A, Shagdarsuren E, et al. (2007) Y-box binding protein-1 controls CC chemokine ligand-5 (CCL5) expression in smooth muscle cells and contributes to neointima formation in atherosclerosis-prone mice. Circulation 116: 1812–1820.
[15]
Cha JK, Jeong MH, Bae HR, Han JY, Jeong SJ, et al. (2000) Activated platelets induce secretion of interleukin-1beta, monocyte chemotactic protein-1, and macrophage inflammatory protein-1alpha and surface expression of intercellular adhesion molecule-1 on cultured endothelial cells. J Korean Med Sci 15: 273–278.
[16]
Quinones MP, Martinez HG, Jimenez F, Estrada CA, Dudley M, et al. (2007) CC chemokine receptor 5 influences late-stage atherosclerosis. Atherosclerosis 195: e92–103.
[17]
Braunersreuther V, Zernecke A, Arnaud C, Liehn EA, Steffens S, et al. (2007) Ccr5 but not Ccr1 deficiency reduces development of diet-induced atherosclerosis in mice. Arterioscler Thromb Vasc Biol 27: 373–379.
[18]
Haumer M, Amighi J, Exner M, Mlekusch W, Sabeti S, et al. (2005) Association of neutrophils and future cardiovascular events in patients with peripheral artery disease. J Vasc Surg 41: 610–617.
[19]
Toor IS, Jaumdally RJ, Moss MS, Babu SB (2008) Preprocedural neutrophil count predicts outcome in patients with advanced peripheral vascular disease undergoing percutaneous transluminal angioplasty. J Vasc Surg 48: 1504–1508.
[20]
Atamas SP, Luzina IG, Choi J, Tsymbalyuk N, Carbonetti NH, et al. (2003) Pulmonary and activation-regulated chemokine stimulates collagen production in lung fibroblasts. Am J Respir Cell Mol Biol 29: 743–749.
[21]
Tarzami ST, Miao W, Mani K, Lopez L, Factor SM, et al. (2003) Opposing effects mediated by the chemokine receptor CXCR2 on myocardial ischemia-reperfusion injury: recruitment of potentially damaging neutrophils and direct myocardial protection. Circulation 108: 2387–2392.
[22]
Somasundaram P, Ren G, Nagar H, Kraemer D, Mendoza L, et al. (2005) Mast cell tryptase may modulate endothelial cell phenotype in healing myocardial infarcts. J Pathol 205: 102–111.
[23]
Schomig K, Busch G, Steppich B, Sepp D, Kaufmann J, et al. (2006) Interleukin-8 is associated with circulating CD133+ progenitor cells in acute myocardial infarction. Eur Heart J 27: 1032–1037.
[24]
Vandervelde S, van Luyn MJ, Rozenbaum MH, Petersen AH, Tio RA, et al. (2007) Stem cell-related cardiac gene expression early after murine myocardial infarction. Cardiovasc Res 73: 783–793.
[25]
Akasaka Y, Morimoto N, Ishikawa Y, Fujita K, Ito K, et al. (2006) Myocardial apoptosis associated with the expression of proinflammatory cytokines during the course of myocardial infarction. Mod Pathol 19: 588–598.
[26]
Frangogiannis NG (2004) The role of the chemokines in myocardial ischemia and reperfusion. Curr Vasc Pharmacol 2: 163–174.
[27]
Frangogiannis NG (2004) Chemokines in the ischemic myocardium: from inflammation to fibrosis. Inflamm Res 53: 585–595.
[28]
Aukrust P, Halvorsen B, Yndestad A, Ueland T, Oie E, et al. (2008) Chemokines and cardiovascular risk. Arterioscler Thromb Vasc Biol 28: 1909–1919.
[29]
Cavusoglu E, Eng C, Chopra V, Clark LT, Pinsky DJ, et al. (2007) Low plasma RANTES levels are an independent predictor of cardiac mortality in patients referred for coronary angiography. Arterioscler Thromb Vasc Biol 27: 929–935.
[30]
Gonzalez-Quesada C, Frangogiannis NG (2009) Monocyte chemoattractant protein-1/CCL2 as a biomarker in acute coronary syndromes. Curr Atheroscler Rep 11: 131–138.
[31]
Simeoni E, Winkelmann BR, Hoffmann MM, Fleury S, Ruiz J, et al. (2004) Association of RANTES G-403A gene polymorphism with increased risk of coronary arteriosclerosis. Eur Heart J 25: 1438–1446.
[32]
Kraaijeveld AO, de Jager SC, de Jager WJ, Prakken BJ, McColl SR, et al. (2007) CC chemokine ligand-5 (CCL5/RANTES) and CC chemokine ligand-18 (CCL18/PARC) are specific markers of refractory unstable angina pectoris and are transiently raised during severe ischemic symptoms. Circulation 116: 1931–1941.
[33]
Cavusoglu E, Eng C, Chopra V, Clark LT, Pinsky DJ, et al. (2007) Low Plasma RANTES Levels Are an Independent Predictor of Cardiac Mortality in Patients Referred for Coronary Angiography. Arterioscler Thromb Vasc Biol 27: 929–935.
[34]
Jang Y, Chae JS, Hyun YJ, Koh SJ, Kim JY, et al. (2007) The RANTES -403G>A promoter polymorphism in Korean men: association with serum RANTES concentration and coronary artery disease. Clin Sci (Lond) 113: 349–356.
[35]
Vogiatzi K, Voudris V, Apostolakis S, Kochiadakis GE, Thomopoulou S, et al. (2009) Genetic diversity of RANTES gene promoter and susceptibility to coronary artery disease and restenosis after percutaneous coronary intervention. Thromb Res 124: 84–89.
[36]
de Jager SC, Kraaijeveld AO, Grauss RW, de Jager W, Liem SS, et al. (2008) CCL3 (MIP-1 alpha) levels are elevated during acute coronary syndromes and show strong prognostic power for future ischemic events. J Mol Cell Cardiol 45: 446–452.
[37]
Alpert JS, Thygesen K, Antman E, Bassand JP (2000) Myocardial infarction redefined–a consensus document of The Joint European Society of Cardiology/American College of Cardiology Committee for the redefinition of myocardial infarction. J Am Coll Cardiol 36: 959–969.
[38]
SCHOENFELD D (1982) Partial residuals for the proportional hazards regression model. Biometrika 69: 239–241.
[39]
Hanley JA, McNeil BJ (1983) A method of comparing the areas under receiver operating characteristic curves derived from the same cases. Radiology 148: 839–843.
[40]
Zethelius B, Berglund L, Sundstrom J, Ingelsson E, Basu S, et al. (2008) Use of multiple biomarkers to improve the prediction of death from cardiovascular causes. N Engl J Med 358: 2107–2116.
[41]
Ridker PM, Buring JE, Cook NR, Rifai N (2003) C-reactive protein, the metabolic syndrome, and risk of incident cardiovascular events: an 8-year follow-up of 14 719 initially healthy American women. Circulation 107: 391–397.
[42]
Ridker PM, Hennekens CH, Buring JE, Rifai N (2000) C-reactive protein and other markers of inflammation in the prediction of cardiovascular disease in women. N Engl J Med 342: 836–843.
[43]
Varo N, de Lemos JA, Libby P, Morrow DA, Murphy SA, et al. (2003) Soluble CD40L: risk prediction after acute coronary syndromes. Circulation 108: 1049–1052.
[44]
Heeschen C, Dimmeler S, Hamm CW, Fichtlscherer S, Boersma E, et al. (2003) Serum level of the antiinflammatory cytokine interleukin-10 is an important prognostic determinant in patients with acute coronary syndromes. Circulation 107: 2109–2114.
[45]
Sattar N, Murray HM, Welsh P, Blauw GJ, Buckley BM, et al. (2009) Are markers of inflammation more strongly associated with risk for fatal than for nonfatal vascular events? PLoS Med 6: e1000099.
[46]
Sarwar N, Gao P, Seshasai SR, Gobin R, Kaptoge S, et al. (2010) Diabetes mellitus, fasting blood glucose concentration, and risk of vascular disease: a collaborative meta-analysis of 102 prospective studies. Lancet 375: 2215–2222.
[47]
Seshasai SR, Kaptoge S, Thompson A, Di Angelantonio E, Gao P, et al. (2011) Diabetes mellitus, fasting glucose, and risk of cause-specific death. N Engl J Med 364: 829–841.
[48]
Butterfield LH, Potter DM, Kirkwood JM (2011) Multiplex serum biomarker assessments: technical and biostatistical issues. J Transl Med 9: 173.
[49]
de Jager W, Bourcier K, Rijkers GT, Prakken BJ, Seyfert-Margolis V (2009) Prerequisites for cytokine measurements in clinical trials with multiplex immunoassays. BMC Immunol 10: 52.