全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
PLOS ONE  2012 

Live Attenuated S. Typhimurium Vaccine with Improved Safety in Immuno-Compromised Mice

DOI: 10.1371/journal.pone.0045433

Full-Text   Cite this paper   Add to My Lib

Abstract:

Live attenuated vaccines are of great value for preventing infectious diseases. They represent a delicate compromise between sufficient colonization-mediated adaptive immunity and minimizing the risk for infection by the vaccine strain itself. Immune defects can predispose to vaccine strain infections. It has remained unclear whether vaccine safety could be improved via mutations attenuating a vaccine in immune-deficient individuals without compromising the vaccine's performance in the normal host. We have addressed this hypothesis using a mouse model for Salmonella diarrhea and a live attenuated Salmonella Typhimurium strain (ssaV). Vaccination with this strain elicited protective immunity in wild type mice, but a fatal systemic infection in immune-deficient cybb?/?nos2?/? animals lacking NADPH oxidase and inducible NO synthase. In cybb?/?nos2?/? mice, we analyzed the attenuation of 35 ssaV strains carrying one additional mutation each. One strain, Z234 (ssaV SL1344_3093), was >1000-fold attenuated in cybb?/?nos2?/? mice and ≈100 fold attenuated in tnfr1?/? animals. However, in wt mice, Z234 was as efficient as ssaV with respect to host colonization and the elicitation of a protective, O-antigen specific mucosal secretory IgA (sIgA) response. These data suggest that it is possible to engineer live attenuated vaccines which are specifically attenuated in immuno-compromised hosts. This might help to improve vaccine safety.

References

[1]  Becker D, Selbach M, Rollenhagen C, Ballmaier M, Meyer TF, et al. (2006) Robust Salmonella metabolism limits possibilities for new antimicrobials. Nature 440: 303–307.
[2]  Cheminay C, Hensel M (2008) Rational design of Salmonella recombinant vaccines. Int J Med Microbiol 298: 87–98.
[3]  Spreng S, Dietrich G, Weidinger G (2006) Rational design of Salmonella-based vaccination strategies. Methods 38: 133–143.
[4]  Germanier R, Fuer E (1975) Isolation and characterization of Gal E mutant Ty 21a of Salmonella typhi: a candidate strain for a live, oral typhoid vaccine. J Infect Dis 131: 553–558.
[5]  Ketley JM, Michalski J, Galen J, Levine MM, Kaper JB (1993) Construction of genetically marked Vibrio cholerae O1 vaccine strains. FEMS Microbiol Lett 111: 15–21.
[6]  Levine MM, Kaper JB, Herrington D, Ketley J, Losonsky G, et al. (1988) Safety, immunogenicity, and efficacy of recombinant live oral cholera vaccines, CVD 103 and CVD 103-HgR. Lancet 2: 467–470.
[7]  Colditz GA, Brewer TF, Berkey CS, Wilson ME, Burdick E, et al. (1994) Efficacy of BCG vaccine in the prevention of tuberculosis. Meta-analysis of the published literature. JAMA 271: 698–702.
[8]  Chen PL, Chang CM, Wu CJ, Ko NY, Lee NY, et al. (2007) Extraintestinal focal infections in adults with nontyphoid Salmonella bacteraemia: predisposing factors and clinical outcome. J Intern Med 261: 91–100.
[9]  Gordon MA (2008) Salmonella infections in immunocompromised adults. J Infect 56: 413–422.
[10]  Kuijpers T, Lutter R (2012) Inflammation and repeated infections in CGD: two sides of a coin. Cell Mol Life Sci 69: 7–15.
[11]  Hohmann EL (2001) Nontyphoidal salmonellosis. Clin Infect Dis 32: 263–269.
[12]  Levine MM (2006) Enteric infections and the vaccines to counter them: future directions. Vaccine 24: 3865–3873.
[13]  Simon R, Tennant SM, Galen JE, Levine MM (2011) Mouse models to assess the efficacy of non-typhoidal Salmonella vaccines: revisiting the role of host innate susceptibility and routes of challenge. Vaccine 29: 5094–5106.
[14]  Hegazy WA, Hensel M (2012) Salmonella enterica as a vaccine carrier. Future Microbiol 7: 111–127.
[15]  Angelakopoulos H, Hohmann EL (2000) Pilot study of phoP/phoQ-deleted Salmonella enterica serovar typhimurium expressing Helicobacter pylori urease in adult volunteers. Infect Immun 68: 2135–2141.
[16]  Hindle Z, Chatfield SN, Phillimore J, Bentley M, Johnson J, et al. (2002) Characterization of Salmonella enterica derivatives harboring defined aroC and Salmonella pathogenicity island 2 type III secretion system (ssaV) mutations by immunization of healthy volunteers. Infect Immun 70: 3457–3467.
[17]  Toso JF, Gill VJ, Hwu P, Marincola FM, Restifo NP, et al. (2002) Phase I study of the intravenous administration of attenuated Salmonella typhimurium to patients with metastatic melanoma. J Clin Oncol 20: 142–152.
[18]  Tacket CO, Hone DM, Curtiss R 3rd, Kelly SM, Losonsky G, et al. (1992) Comparison of the safety and immunogenicity of delta aroC delta aroD and delta cya delta crp Salmonella typhi strains in adult volunteers. Infect Immun 60: 536–541.
[19]  Hone DM, Tacket CO, Harris AM, Kay B, Losonsky G, et al. (1992) Evaluation in volunteers of a candidate live oral attenuated Salmonella typhi vector vaccine. J Clin Invest 90: 412–420.
[20]  Dilts DA, Riesenfeld-Orn I, Fulginiti JP, Ekwall E, Granert C, et al. (2000) Phase I clinical trials of aroA aroD and aroA aroD htrA attenuated S. typhi vaccines; effect of formulation on safety and immunogenicity. Vaccine 18: 1473–1484.
[21]  Kotton CN, Lankowski AJ, Scott N, Sisul D, Chen LM, et al. (2006) Safety and immunogenicity of attenuated Salmonella enterica serovar Typhimurium delivering an HIV-1 Gag antigen via the Salmonella Type III secretion system. Vaccine 24: 6216–6224.
[22]  Norouzi S, Aghamohammadi A, Mamishi S, Rosenzweig SD, Rezaei N (2012) Bacillus Calmette-Guerin (BCG) complications associated with primary immunodeficiency diseases. J Infect
[23]  Coster TS, Hoge CW, VanDeVerg LL, Hartman AB, Oaks EV, et al. (1999) Vaccination against shigellosis with attenuated Shigella flexneri 2a strain SC602. Infect Immun 67: 3437–3443.
[24]  Kotloff KL, Noriega F, Losonsky GA, Sztein MB, Wasserman SS, et al. (1996) Safety, immunogenicity, and transmissibility in humans of CVD 1203, a live oral Shigella flexneri 2a vaccine candidate attenuated by deletions in aroA and virG. Infect Immun 64: 4542–4548.
[25]  Kotloff KL, Taylor DN, Sztein MB, Wasserman SS, Losonsky GA, et al. (2002) Phase I evaluation of delta virG Shigella sonnei live, attenuated, oral vaccine strain WRSS1 in healthy adults. Infect Immun 70: 2016–2021.
[26]  Karnell A, Li A, Zhao CR, Karlsson K, Nguyen BM, et al. (1995) Safety and immunogenicity study of the auxotrophic Shigella flexneri 2a vaccine SFL1070 with a deleted aroD gene in adult Swedish volunteers. Vaccine 13: 88–99.
[27]  Tamma P (2010) Vaccines in immunocompromised patients. Pediatr Rev 31: 38–40.
[28]  Endt K, Maier L, Kappeli R, Barthel M, Misselwitz B, et al. (2012) In a mouse model for S. Typhimurium diarrhea, peroral ciprofloxacin-therapy impairs the generation of a protective immune response, while parenteral ceftriaxone-therapy does not. Antimicrob Agents Chemother
[29]  Endt K, Stecher B, Chaffron S, Slack E, Tchitchek N, et al. (2010) The microbiota mediates pathogen clearance from the gut lumen after non-typhoidal Salmonella diarrhea. PLoS Pathog 6: e1001097.
[30]  Kaiser P, Diard M, Stecher B, Hardt WD (2012) The streptomycin mouse model for Salmonella diarrhea: functional analysis of the microbiota, the pathogen's virulence factors, and the host's mucosal immune response. Immunol Rev 245: 56–83.
[31]  Barthel M, Hapfelmeier S, Quintanilla-Martinez L, Kremer M, Rohde M, et al. (2003) Pretreatment of mice with streptomycin provides a Salmonella enterica serovar Typhimurium colitis model that allows analysis of both pathogen and host. Infect Immun 71: 2839–2858.
[32]  Hensel M, Shea JE, Gleeson C, Jones MD, Dalton E, et al. (1995) Simultaneous identification of bacterial virulence genes by negative selection. Science 269: 400–403.
[33]  Fang FC (2004) Antimicrobial reactive oxygen and nitrogen species: concepts and controversies. Nat Rev Microbiol 2: 820–832.
[34]  Mastroeni P, Vazquez-Torres A, Fang FC, Xu Y, Khan S, et al. (2000) Antimicrobial actions of the NADPH phagocyte oxidase and inducible nitric oxide synthase in experimental salmonellosis. II. Effects on microbial proliferation and host survival in vivo. J Exp Med 192: 237–248.
[35]  Vazquez-Torres A, Jones-Carson J, Mastroeni P, Ischiropoulos H, Fang FC (2000) Antimicrobial actions of the NADPH phagocyte oxidase and inducible nitric oxide synthase in experimental salmonellosis. I. Effects on microbial killing by activated peritoneal macrophages in vitro. J Exp Med 192: 227–236.
[36]  Winkelstein JA, Marino MC, Johnston RB Jr, Boyle J, Curnutte J, et al. (2000) Chronic granulomatous disease. Report on a national registry of 368 patients. Medicine (Baltimore) 79: 155–169.
[37]  Grant AJ, Restif O, McKinley TJ, Sheppard M, Maskell DJ, et al. (2008) Modelling within-host spatiotemporal dynamics of invasive bacterial disease. PLoS Biol 6: e74.
[38]  Hapfelmeier S, Stecher B, Barthel M, Kremer M, Muller AJ, et al. (2005) The Salmonella pathogenicity island (SPI)-2 and SPI-1 type III secretion systems allow Salmonella serovar typhimurium to trigger colitis via MyD88-dependent and MyD88-independent mechanisms. J Immunol 174: 1675–1685.
[39]  Graham SM, Walsh AL, Molyneux EM, Phiri AJ, Molyneux ME (2000) Clinical presentation of non-typhoidal Salmonella bacteraemia in Malawian children. Trans R Soc Trop Med Hyg 94: 310–314.
[40]  Gordon MA, Banda HT, Gondwe M, Gordon SB, Boeree MJ, et al. (2002) Non-typhoidal salmonella bacteraemia among HIV-infected Malawian adults: high mortality and frequent recrudescence. AIDS 16: 1633–1641.
[41]  Hess J, Ladel C, Miko D, Kaufmann SH (1996) Salmonella typhimurium aroA- infection in gene-targeted immunodeficient mice: major role of CD4+ TCR-alpha beta cells and IFN-gamma in bacterial clearance independent of intracellular location. J Immunol 156: 3321–3326.
[42]  Sinha K, Mastroeni P, Harrison J, de Hormaeche RD, Hormaeche CE (1997) Salmonella typhimurium aroA, htrA, and aroD htrA mutants cause progressive infections in athymic (nu/nu) BALB/c mice. Infect Immun 65: 1566–1569.
[43]  Songhet P, Barthel M, Stecher B, Muller AJ, Kremer M, et al. (2011) Stromal IFN-gammaR-signaling modulates goblet cell function during Salmonella Typhimurium infection. PLoS One 6: e22459.
[44]  Rosenzweig SD, Holland SM (2005) Defects in the interferon-gamma and interleukin-12 pathways. Immunol Rev 203: 38–47.
[45]  van de Vosse E, van Dissel JT, Ottenhoff TH (2009) Genetic deficiencies of innate immune signalling in human infectious disease. Lancet Infect Dis 9: 688–698.
[46]  Gondwe EN, Molyneux ME, Goodall M, Graham SM, Mastroeni P, et al. (2010) Importance of antibody and complement for oxidative burst and killing of invasive nontyphoidal Salmonella by blood cells in Africans. Proc Natl Acad Sci U S A 107: 3070–3075.
[47]  Siggins MK, Cunningham AF, Marshall JL, Chamberlain JL, Henderson IR, et al. (2011) Absent bactericidal activity of mouse serum against invasive African nontyphoidal Salmonella results from impaired complement function but not a lack of antibody. J Immunol 186: 2365–2371.
[48]  Everest P, Roberts M, Dougan G (1998) Susceptibility to Salmonella typhimurium infection and effectiveness of vaccination in mice deficient in the tumor necrosis factor alpha p55 receptor. Infect Immun 66: 3355–3364.
[49]  Vazquez-Torres A, Fantuzzi G, Edwards CK 3rd, Dinarello CA, Fang FC (2001) Defective localization of the NADPH phagocyte oxidase to Salmonella-containing phagosomes in tumor necrosis factor p55 receptor-deficient macrophages. Proc Natl Acad Sci U S A 98: 2561–2565.
[50]  Franchi L, Eigenbrod T, Munoz-Planillo R, Nunez G (2009) The inflammasome: a caspase-1-activation platform that regulates immune responses and disease pathogenesis. Nat Immunol 10: 241–247.
[51]  Lara-Tejero M, Sutterwala FS, Ogura Y, Grant EP, Bertin J, et al. (2006) Role of the caspase-1 inflammasome in Salmonella typhimurium pathogenesis. J Exp Med 203: 1407–1412.
[52]  Muller AJ, Hoffmann C, Galle M, Van Den Broeke A, Heikenwalder M, et al. (2009) The S. Typhimurium effector SopE induces caspase-1 activation in stromal cells to initiate gut inflammation. Cell Host Microbe 6: 125–136.
[53]  Dougan G, John V, Palmer S, Mastroeni P (2011) Immunity to salmonellosis. Immunol Rev 240: 196–210.
[54]  Jantsch J, Chikkaballi D, Hensel M (2011) Cellular aspects of immunity to intracellular Salmonella enterica. Immunol Rev 240: 185–195.
[55]  Ugrinovic S, Menager N, Goh N, Mastroeni P (2003) Characterization and development of T-Cell immune responses in B-cell-deficient (Igh-6(?/?)) mice with Salmonella enterica serovar Typhimurium infection. Infect Immun 71: 6808–6819.
[56]  Collins FM (1974) Vaccines and cell-mediated immunity. Bacteriol Rev 38: 371–402.
[57]  Eisenstein TK, Killar LM, Sultzer BM (1984) Immunity to infection with Salmonella typhimurium: mouse-strain differences in vaccine- and serum-mediated protection. J Infect Dis 150: 425–435.
[58]  Hochadel JF, Keller KF (1977) Protective effects of passively transferred immune T- or B-lymphocytes in mice infected with Salmonella typhimurium. J Infect Dis 135: 813–823.
[59]  Slauch JM (2011) How does the oxidative burst of macrophages kill bacteria? Still an open question. Mol Microbiol 80: 580–583.
[60]  Pujol C, Grabenstein JP, Perry RD, Bliska JB (2005) Replication of Yersinia pestis in interferon gamma-activated macrophages requires ripA, a gene encoded in the pigmentation locus. Proc Natl Acad Sci U S A 102: 12909–12914.
[61]  Torres R, Swift RV, Chim N, Wheatley N, Lan B, et al. (2011) Biochemical, structural and molecular dynamics analyses of the potential virulence factor RipA from Yersinia pestis. PLoS One 6: e25084.
[62]  Torres R, Chim N, Sankaran B, Pujol C, Bliska JB, et al. (2012) Structural insights into RipC, a putative citrate lyase beta subunit from a Yersinia pestis virulence operon. Acta Crystallogr Sect F Struct Biol Cryst Commun 68: 2–7.
[63]  Goulding CW, Bowers PM, Segelke B, Lekin T, Kim CY, et al. (2007) The structure and computational analysis of Mycobacterium tuberculosis protein CitE suggest a novel enzymatic function. J Mol Biol 365: 275–283.
[64]  Eriksson S, Lucchini S, Thompson A, Rhen M, Hinton JC (2003) Unravelling the biology of macrophage infection by gene expression profiling of intracellular Salmonella enterica. Mol Microbiol 47: 103–118.
[65]  Santiviago CA, Reynolds MM, Porwollik S, Choi SH, Long F, et al. (2009) Analysis of pools of targeted Salmonella deletion mutants identifies novel genes affecting fitness during competitive infection in mice. PLoS Pathog 5: e1000477.
[66]  Shah DH, Lee MJ, Park JH, Lee JH, Eo SK, et al. (2005) Identification of Salmonella gallinarum virulence genes in a chicken infection model using PCR-based signature-tagged mutagenesis. Microbiology 151: 3957–3968.
[67]  Zhao Y, Jansen R, Gaastra W, Arkesteijn G, van der Zeijst BA, et al. (2002) Identification of genes affecting Salmonella enterica serovar enteritidis infection of chicken macrophages. Infect Immun 70: 5319–5321.
[68]  Shi L, Adkins JN, Coleman JR, Schepmoes AA, Dohnkova A, et al. (2006) Proteomic analysis of Salmonella enterica serovar typhimurium isolated from RAW 264.7 macrophages: identification of a novel protein that contributes to the replication of serovar typhimurium inside macrophages. J Biol Chem 281: 29131–29140.
[69]  Booth IR, Ferguson GP, Miller S, Li C, Gunasekera B, et al. (2003) Bacterial production of methylglyoxal: a survival strategy or death by misadventure? Biochem Soc Trans 31: 1406–1408.
[70]  Okamura H, Murooka Y, Harada T (1976) Regulation of tyramine oxidase synthesis in Klebsiella aerogenes. J Bacteriol 127: 24–31.
[71]  Sugino H, Sasaki M, Azakami H, Yamashita M, Murooka Y (1992) A monoamine-regulated Klebsiella aerogenes operon containing the monoamine oxidase structural gene (maoA) and the maoC gene. J Bacteriol 174: 2485–2492.
[72]  Hoiseth SK, Stocker BA (1981) Aromatic-dependent Salmonella typhimurium are non-virulent and effective as live vaccines. Nature 291: 238–239.
[73]  Peters RP, Zijlstra EE, Schijffelen MJ, Walsh AL, Joaki G, et al. (2004) A prospective study of bloodstream infections as cause of fever in Malawi: clinical predictors and implications for management. Trop Med Int Health 9: 928–934.
[74]  Suar M, Periaswamy B, Songhet P, Misselwitz B, Muller A, et al. (2009) Accelerated type III secretion system 2-dependent enteropathogenesis by a Salmonella enterica serovar enteritidis PT4/6 strain. Infect Immun 77: 3569–3577.
[75]  Suar M, Jantsch J, Hapfelmeier S, Kremer M, Stallmach T, et al. (2006) Virulence of broad- and narrow-host-range Salmonella enterica serovars in the streptomycin-pretreated mouse model. Infect Immun 74: 632–644.
[76]  Ilg K, Endt K, Misselwitz B, Stecher B, Aebi M, et al. (2009) O-antigen-negative Salmonella enterica serovar Typhimurium is attenuated in intestinal colonization but elicits colitis in streptomycin-treated mice. Infect Immun 77: 2568–2575.
[77]  Wolfe LC, Lux SE (1978) Membrane protein phosphorylation of intact normal and hereditary spherocytic erythrocytes. J Biol Chem 253: 3336–3342.
[78]  Ackermann M, Stecher B, Freed NE, Songhet P, Hardt WD, et al. (2008) Self-destructive cooperation mediated by phenotypic noise. Nature 454: 987–990.
[79]  Li P, Allen H, Banerjee S, Franklin S, Herzog L, et al. (1995) Mice deficient in IL-1 beta-converting enzyme are defective in production of mature IL-1 beta and resistant to endotoxic shock. Cell 80: 401–411.
[80]  Gruenheid S, Gros P (2000) Genetic susceptibility to intracellular infections: Nramp1, macrophage function and divalent cations transport. Curr Opin Microbiol 3: 43–48.
[81]  Stecher B, Hapfelmeier S, Muller C, Kremer M, Stallmach T, et al. (2004) Flagella and chemotaxis are required for efficient induction of Salmonella enterica serovar Typhimurium colitis in streptomycin-pretreated mice. Infect Immun 72: 4138–4150.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133