全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
PLOS ONE  2012 

A Least Angle Regression Model for the Prediction of Canonical and Non-Canonical miRNA-mRNA Interactions

DOI: 10.1371/journal.pone.0040634

Full-Text   Cite this paper   Add to My Lib

Abstract:

microRNAs (miRNAs) are short non-coding RNAs with regulatory functions in various biological processes including cell differentiation, development and oncogenic transformation. They can bind to mRNA transcripts of protein-coding genes and repress their translation or lead to mRNA degradation. Conversely, the transcription of miRNAs is regulated by proteins including transcription factors, co-factors, and messenger molecules in signaling pathways, yielding a bidirectional regulatory network of gene and miRNA expression. We describe here a least angle regression approach for uncovering the functional interplay of gene and miRNA regulation based on paired gene and miRNA expression profiles. First, we show that gene expression profiles can indeed be reconstructed from the expression profiles of miRNAs predicted to be regulating the specific gene. Second, we propose a two-step model where in the first step, sequence information is used to constrain the possible set of regulating miRNAs and in the second step, this constraint is relaxed to find regulating miRNAs that do not rely on perfect seed binding. Finally, a bidirectional network comprised of miRNAs regulating genes and genes regulating miRNAs is built from our previous regulatory predictions. After applying the method to a human cancer cell line data set, an analysis of the underlying network reveals miRNAs known to be associated with cancer when dysregulated are predictors of genes with functions in apoptosis. Among the predicted and newly identified targets that lack a classical miRNA seed binding site of a specific oncomir, miR-19b-1, we found an over-representation of genes with functions in apoptosis, which is in accordance with the previous finding that this miRNA is the key oncogenic factor in the mir-17-92 cluster. In addition, we found genes involved in DNA recombination and repair that underline its importance in maintaining the integrity of the cell.

References

[1]  Bartel DP (2009) MicroRNAs: target recognition and regulatory functions. Cell 136: 215–233.
[2]  Bartel DP (2004) MicroRNAs: genomics, biogenesis, mechanism, and function. Cell 116: 281–297.
[3]  Friedman RC, Farh KKH, Burge CB, Bartel DP (2009) Most mammalian mRNAs are conserved targets of microRNAs. Genome Res 19: 92–105.
[4]  Ambros V (2004) The functions of animal microRNAs. Nature 431: 350–355.
[5]  Pillai RS (2005) MicroRNA function: Multiple mechanisms for a tiny RNA? RNA 11: 1753–1761.
[6]  Sood P, Krek A, Zavolan M, Macino G, Rajewski N (2006) Cell-type-specific signatures of microR-NAs on target mRNA expression. PNAS 103: 2746–2751.
[7]  Croce CM (2009) Causes and consequences of microRNA dysregulation in cancer. Nat Rev Genet 10: 704–714.
[8]  Brodersen P, Voinnet O (2009) Revisiting the principles of microRNA target recognition and mode of action. Nature Rev Mol Cell Biol 10: 141–148.
[9]  Meister G, Landthaler M, Peters L, Chen PY, Urlaub H, et al. (2005) Identification of novel argonaute-associated proteins. Curr Biol 15: 2149–2155.
[10]  Filipowicz W, Bhattacharyya SN, Sonenberg N (2008) Mechanisms of post-transcriptional regulation by microRNAs: are the answers in sight? Nat Rev Genet 9: 102–114.
[11]  Betel D, Wilson M, Gabow A, Marks DS, Sander C (2008) The microRNA.org resource: targets and expression. Nucleic Acids Res 36: D149–D153.
[12]  Griffiths-Jones S, Saini HK, van Dongen S, Enright AJ (2008) miRBase: tools for microRNA genomics. Nucleic Acids Res 36: D154–D158.
[13]  Grimson A, Farh KKH, Johnston WK, Garrett-Engele P, Lim LP, et al. (2007) MicroRNA targeting specificity in mammals: determinants beyond seed pairing. Mol Cell 27: 91–105.
[14]  Kertesz M, Iovino N, Unnerstall U, Gaul U, Segal E (2007) The role of site accessibility in mi-croRNA target recognition. Nat Genet 39: 1278–1284.
[15]  Long D, Lee R, Williams P, Chan CY, Ambros V, et al. (2007) Potent effect of target structure on microRNA function. Nat Struct Mol Biol 14: 287–294.
[16]  Elefant N, Altuvia Y, Margalit H (2011) A wide repertoire of miRNA binding sites: prediction and functional implications. Bioinformatics 27: 3093–3101.
[17]  Huang JC, Morris QD, Frey BJ (2007) Bayesian inference of microRNA targets from sequence and expression data. J Comput Biol 14: 550563.
[18]  Huang JC, Frey BJ, Morris QD (2008) Comparing sequence and expression for predicting microRNA targets using GenMiR3. Pacific Symposium on Biocomputing 13: 52–63.
[19]  Lu Y, Zhou Y, Qu W, Deng M, Zhang C (2011) A Lasso regression model for the construction of microRNA-target regulatory networks. Bioinformatics 27: 2406–2413.
[20]  Betel D, Koppal A, Agius P, Sander C, Leslie C (2010) Comprehensive modeling of microRNA targets predicts functional non-conserved and non-canonical sites. Genome Biol 11: R90.
[21]  Radfar MH, Wong W, Morris Q (2011) Computational prediction of intronic microRNA targets using host gene expression reveals novel regulatory mechanisms. PLoS One 6: e19312.
[22]  Ritchie W, Rajasekhar M, Flamant S, Rasko JEJ (2009) Conserved expression patterns predict microRNA targets. PLOS Comput Biol 5: e1000513.
[23]  Stanhope SA, Sengupta S, den Boon J, Ahlquist P, Newton MA (2009) Statistical use of argonaute expression and RISC assembly in microRNA target identification. PLoS Comput Biol 5: e1000516.
[24]  Wang YP, Li KB (2009) Correlation of expression profiles between microRNAs and mRNA targets using NCI-60 data. BMC Genomics 10: 218.
[25]  John B, Sander C, Marks DS (2006) MicroRNA Protocols, Humana Press, volume 342 of Methods in Molecular Biology, chapter Prediction of Human MicroRNA Targets. pp. 101–113. doi:10.1385/1-59745-123-1:101.
[26]  Vasudevan S, Tong Y, Steitz JA (2007) Switching from repression to activation: microRNAs can up-regulate translation. Science 318: 1931–1934.
[27]  Vasudevan S, Tong Y, Steitz JA (2008) Cell cycle control of microRNA-mediated translation regulation. Cell Cycle 7: 1545–1549.
[28]  Anders G, Mackowiak SD, Jens M, Maaskola J, Kuntzagk A, et al. (2012) doRiNA: a database of RNA interactions in post-transcriptional regulation. Nucleic Acids Res 40: D180–D186.
[29]  Maragkakis M, Reczko M, Simossis VA, Alexiou P, Papadopoulos GL, et al. (2009) DIANA-microT web server: elucidating microRNA functions through target prediction. Nucleic Acids Res 37: W273–W276.
[30]  Efron B, Hastie T, Johnstone I, Tibshirani R (2004) Least angle regression. The Annals of Statistics 32: 407–499.
[31]  Benjamini Y, Hochberg Y (1995) Controlling the false discovery rate: a practical and powerful approach to multiple testing. J R Statist Soc B 57: 289–300.
[32]  Slawski M, zu Castell W, Tutz G (2009) Feature selection guided by structural information. Technical report, Department of Statistics, University of Munich. URL. http://epub.ub.uni-muenchen.de/10251/.
[33]  Esquela-Kerscher A, Slack FJ (2006) Oncomirs - microRNAs with a role in cancer. Nature Reviews Cancer 6: 259–269.
[34]  The Gene Ontology Consortium (2000) Gene Ontology: tool for the unification of biology. Nature Genetics 25: 25–29.
[35]  Olive V, Bennett MJ, Walker JC, Ma C, Jiang I, et al. (2009) miR-19 is a key oncogenic component of mir-17–92. Genes Dev 23: 2839–2849.
[36]  Brambillasca F, Mosna G, Colombo M, Rivolta A, Caslini C, et al. (1999) Identification of a novel molecular partner of the E2A gene in childhood leukemia. Leukemia 13: 369–375.
[37]  Dugan KA, Wood MA, Cole MD (2002) TIP49, but not TRRAP, modulates c-Myc and E2F1 dependent apoptosis. Oncogene 21: 5835–5843.
[38]  Blower PE, Verducci JS, Lin S, Zhou J, Chung JH, et al. (2007) MicroRNA expression profiles for the NCI-60 cancer cell panel. Mol Cancer Ther 6: 1483–1491.
[39]  Gaur A, Jewell DA, Liang Y, Ridzon D, Moore JH, et al. (2007) Characterization of microRNA expression levels and their biological correlates in human cancer cell lines. Cancer Res 67: 2456–2468.
[40]  Liu H, D’Andrade P, Fulmer-Smentek S, Lorenzi P, Kohn KW, et al. (2010) mRNA and microRNA expression profiles of the NCI-60 integrated with drug activities. Mol Cancer Ther 9: 1080–1091.
[41]  S?kilde R, Kaczkowski B, Podolska A, Cirera S, Gorodkin J, et al. (2011) Global microRNA analysis of the NCI-60 cancer cell panel. Mol Cancer Ther 10: 375–384.
[42]  Shankavaram UT, Reinhold WC, Nishizuka S, Major S, Morita D, et al. (2007) Transcript and protein expression profiles of the NCI-60 cancer cell panel: an integromic microarray study. Mol Cancer Ther 6: 820–832.
[43]  Meister G, Tuschl T (2004) Mechanisms of gene silencing by double-stranded RNA. Nature 431: 343–349.
[44]  Sandberg R, Neilson JR, Sarma A, Sharp PA, Burge CB (2008) Proliferating cells express mRNAs with shortened 3′ untranslated regions and fewer microRNA target sites. Science 320: 1643–1647.
[45]  Bhattacharyya SN, Habermacher R, Martine U, Closs EI, FilipowiczW (2006) Relief of microRNA-mediated translational repression in human cells subjected to stress. Cell 125: 1111–1124.
[46]  Huber W, von Heydebreck A, Sueltmann H, Poustka A, Vingron M (2002) Variance stabiliza-tion applied to microarray data calibration and to the quantification of differential expression. Bioinformatics 18: S96–S104.
[47]  Bolstad BM, Irizarry RA, Astrand M, Speed TP (2003) A comparison of normalization methods for high density oligonucleotide array data based on variance and bias. Bioinformatics 19: 185–193.
[48]  R Development Core Team (2009) R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. ISBN 3-900051-07-0. URL http://www.R-project.org.
[49]  Gentleman RC, Carey VJ, Bates DM, Bolstad B, Dettling M, et al. (2004) Bioconductor: Open software development for computational biology and bioinformatics. Genome Biology 5: R80.
[50]  Tibshirani R (1996) Regression shrinkage and selection via the lasso. J Royal Statist Soc B 58: 267–288.
[51]  Hastie T, Efron B (2007) lars: Least Angle Regression, Lasso and Forward Stagewise. R package version 0.9–7.
[52]  Falcon S, Gentleman R (2007) Using GOstats to test gene lists for GO term association. Bioinformatics 23: 257–8.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133