全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
PLOS ONE  2012 

Pharmacological Inhibition of Microsomal Prostaglandin E Synthase-1 Suppresses Epidermal Growth Factor Receptor-Mediated Tumor Growth and Angiogenesis

DOI: 10.1371/journal.pone.0040576

Full-Text   Cite this paper   Add to My Lib

Abstract:

Background Blockade of Prostaglandin (PG) E2 production via deletion of microsomal Prostaglandin E synthase-1 (mPGES-1) gene reduces tumor cell proliferation in vitro and in vivo on xenograft tumors. So far the therapeutic potential of the pharmacological inhibition of mPGES-1 has not been elucidated. PGE2 promotes epithelial tumor progression via multiple signaling pathways including the epidermal growth factor receptor (EGFR) signaling pathway. Methodology/Principal Findings Here we evaluated the antitumor activity of AF3485, a compound of a novel family of human mPGES-1 inhibitors, in vitro and in vivo, in mice bearing human A431 xenografts overexpressing EGFR. Treatment of the human cell line A431 with interleukin-1beta (IL-1β) increased mPGES-1 expression, PGE2 production and induced EGFR phosphorylation, and vascular endothelial growth factor (VEGF) and fibroblast growth factor-2 (FGF-2) expression. AF3485 reduced PGE2 production, both in quiescent and in cells stimulated by IL-1β. AF3485 abolished IL-1β-induced activation of the EGFR, decreasing VEGF and FGF-2 expression, and tumor-mediated endothelial tube formation. In vivo, in A431 xenograft, AF3485, administered sub-chronically, decreased tumor growth, an effect related to inhibition of EGFR signalling, and to tumor microvessel rarefaction. In fact, we observed a decrease of EGFR phosphorylation, and VEGF and FGF-2 expression in tumours explanted from treated mice. Conclusion Our work demonstrates that the pharmacological inhibition of mPGES-1 reduces squamous carcinoma growth by suppressing PGE2 mediated-EGFR signalling and by impairing tumor associated angiogenesis. These results underscore the potential of mPGES-1 inhibitors as agents capable of controlling tumor growth.

References

[1]  Marnett LJ, DuBois RN (2002) COX-2: a target for colon cancer prevention. Annu Rev Pharmacol Toxicol 42: 55–80.
[2]  Eberhart CE, Coffey RJ, Radhika A, Giardiello FM, Ferrenbach S, et al. (1994) Up-regulation of cyclooxygenase 2 gene expression in human colorectal adenomas and adenocarcinomas. Gastroenterology 107: 1183–8.
[3]  Menter DG, Schilsky RL, DuBois RN (2010) Cyclooxygenase-2 and cancer treatment: understanding the risk should be worth the reward. Clin Cancer Res 16: 1384–90.
[4]  Samuelsson B, Morgenstern R, Jakobsson PJ (2007) Membrane prostaglandin E synthase-1: a novel therapeutic target. Pharmacol Rev 59: 207–224.
[5]  Yoshimatsu K, Altorki NK, Golijanin D, Zhang F, Jakobsson PJ, et al. (2001) Inducible prostaglandin E synthase is overexpressed in non-small cell lung cancer. Clin Cancer Res 7: 2669–74.
[6]  Golijanin D, Tan JY, Kazior A, Cohen EG, Russo P, et al. (2004) Cyclooxygenase-2 and microsomal prostaglandin E synthase-1 are overexpressed in squamous cell carcinoma of the penis. Clin Cancer Res 10: 1024–1031.
[7]  R?dmark O, Samuelsson B (2010) Microsomal prostaglandin E synthase-1 and 5-lipoxygenase: potential drug targets in cancer. J Intern Med 268: 5–14.
[8]  Nakanishi M, Montrose DC, Clark P, Nambiar PR, Belinsky GS, et al. (2008) Genetic deletion of mPGES-1 suppresses intestinal tumorigenesis. Cancer Res 68: 3251–9.
[9]  Kamei D, Murakami M, Nakatani Y, Ishikawa Y, Ishii T, et al. (2003) Potential role of microsomal prostaglandin E synthase-1 in tumorigenesis. J Biol Chem 278: 19396–405.
[10]  Terzuoli E, Donnini S, Giachetti A, I?iguez MA, Fresno M, et al. (2010) Inhibition of hypoxia inducible factor-1alpha by dihydroxyphenylethanol, a product from olive oil, blocks microsomal prostaglandin-E synthase-1/vascular endothelial growth factor expression and reduces tumor angiogenesis. Clin Cancer Res 16: 4207–16.
[11]  Pai R, Soreghan B, Szabo IL, Pavelka M, Baatar D, Tarnawski AS (2002) Prostaglandin E2 transactivates EGF receptor: a novel mechanism for promoting colon cancer growth and gastrointestinal hypertrophy. Nat Med 8: 289–93.
[12]  Buchanan FG, Wang D, Bargiacchi F, DuBois RN (2003) Prostaglandin E2 regulates cell migration via the intracellular activation of the epidermal growth factor receptor. J Biol Chem 278: 35451–7.
[13]  Donnini S, Finetti F, Solito R, Terzuoli E, Sacchetti A, et al. (2007) EP2 prostanoid receptor promotes squamous cell carcinoma growth through epidermal growth factor receptor transactivation and iNOS and ERK1/2 pathways. FASEB J 21: 2418–30.
[14]  Xu D, Rowland SE, Clark P, Giroux A, Cote’ B, et al. (2008) MF63 [2-(6-Chloro-1H-phenanthro[9,10 d]imidazol-2-yl)isophthalonitrile], a Selective Microsomal Prostaglandin E Synthase-1 Inhibitor, Relieves Pyresis a and Pain in Preclinical Models of Inflammation. J Pharmacol Exp Ther 326: 754–763.
[15]  Mbalaviele G, Pauley AM, Shaffer AF, Zweifel BS, Mathialagan S, et al. (2010) Distinction of microsomal prostaglandin E synthase-1 (mPGES-1) inhibition from cyclooxygenase-2 inhibition in cells using a novel, selective mPGES-1 inhibitor. Biochem Pharmacol 79: 1445–54.
[16]  Koeberle A, Zettl H, Greiner C, Wurglics M, Schubert-Zsilavecz M, et al. (2008) Pirinixic acid derivatives as novel dual inhibitors of microsomal prostaglandin E2 synthase-1 and 5-lipoxygenase. J Med Chem 51: 8068–8076.
[17]  Bruno A, Di Francesco L, Coletta I, Mangano G, Alisi MA, et al. (2010) Effects of AF3442 [N-(9-ethyl-9H-carbazol-3-yl)-2-(trifluo?romethyl)benzamide],a novel inhibitor of human microsomal prostaglandin E synthase-1, on prostanoid biosynthesis in human monocytes in vitro. Biochem Pharmacol 79(7): 974–81.
[18]  Thoren S, Jakobsson PJ (2000) Coordinate up- and down-regulation of glutathione-dependent prostaglandin E synthase and cyclooxygenase-2 in A549 cells inhibition by NS-398 and leukotriene C4. Eur J Biochem 267: 6428–6434.
[19]  De Simone R, Chini MG, Bruno I, Riccio R, Mueller D, et al. (2011) Structure-based discovery of inhibitors of microsomal prostaglandin E2 synthase-1, 5-lipoxygenase and 5-lipoxygenase-activating protein: promising hits for the development of new anti-inflammatory agents. J Med Chem 54(6): 1565–1575.
[20]  Johns TG, Luwor RB, Murone C, Walker F, Weinstock J, et al. (2003) Antitumor efficacy of cytotoxic drugs and the monoclonal antibody 806 is enhanced by the EGF receptor inhibitor AG1478. Proc Natl Acad Sci U S A 100: 15871–15876.
[21]  Ziche M, Jones J, Gullino PM (1982) Role of prostaglandin E1 and copper in angiogenesis. J Natl Cancer Inst 69: 475–82.
[22]  Chang SH, Liu CH, Conway R, Han DK, Nithipatikum K, et al. (2004) Role of prostaglandin E2-dependent angiogenic switch in cyclooxygenase 2-induced breast cancer progression. Proc Natl Acad Sci USA 10: 591–606.
[23]  Finetti F, Solito R, Morbidelli L, Giachetti A, Ziche M, et al. (2008) Prostaglandin E2 regulates angiogenesis via activation of fibroblast growth factor receptor-1. J Biol Chem 283: 2139–46.
[24]  Wang D, Dubois RN (2010) The role of COX-2 in intestinal inflammation and colorectal cancer. Oncogene 29: 781–8.
[25]  Siemoneit U, Koeberle A, Rossi A, Dehm F, Verhoff M, et al. (2011) Inhibition of microsomal prostaglandin E2 synthase-1 as a molecular basis for the anti-inflammatory actions of boswellic acids from frankincense. Br J Pharmacol 162: 147–62.
[26]  Lu D, Han C, Wu T (2011) Microsomal Prostaglandin E Synthase-1 Inhibits PTEN and Promotes Experimental Cholangiocarcinogenesis and Tumor Progression. Gastroenterology 140: 2084–94.
[27]  Donnini S, Finetti F, Terzuoli E, Giachetti A, I?iguez MA, et al. (2011) EGFR signaling upregulates expression of microsomal prostaglandin E synthase-1 in cancer cells leading to enhanced tumorigenicity. Oncogene. doi:10.1038/onc.2011.503.
[28]  Bennett CF, Chiang MY, Monia BP, Crooke ST (1993) Regulation of 5-lipoxygenase and 5-lipoxygenase-activating protein expression in HL-60 cells. Biochem J 289: 33–39.
[29]  Donnini S, Solito R, Cetti E, Corti F, Giachetti A, et al. (2010) Abeta peptides accelerate the senescence of endothelial cells in vitro and in vivo, impairing angiogenesis. FASEB J 24: 2385–2395.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133