[1] | Chico E, Olavarria JS, Nu?ez de Castro I (1978) L-Alanine as an end product of glycolisis in Saccharomyces cerevisiae growing under different hypoxic conditions. Antonie Leeuwenhoek 44: 193–201.
|
[2] | De Sousa CAF, Sodek L (2003) Alanine metabolism and alanine aminotransferase activity in soybean (Glycine max) during hypoxia of the root system and subsequent return to normoxia. Environ. Exp. Bot. 50: 1–8.
|
[3] | Gatehouse PW, Hopper S, Schatz L, Segal HL (1967) Further characterization of alanine aminotransferase of rat liver. J. Biol. Chem. 242: 2319–2324.
|
[4] | Liu L, Zhong S, Yang R, Hu H, Yu D, et al. (2008) Expression, purification and initial characterization of human alanine aminotransferase (ALT) isoenzyme 1 and 2 in High-five insect cells. Prot. Exp. Pur. 60: 225–231.
|
[5] | Umemura I, Yanagiya K, Komatsubara S, Sato T, Tosa T (1994) Purification and some properties of alanine aminotransferase from Candida maltosa. Biosci. Biotechnol. Biochem. 58: 283–287.
|
[6] | Wang MD, Buckley L, Berg CM (1987) Cloning of genes that suppress an Escherichia coli K-12 alanine auxotroph when present in multicopy plasmids. J. Bacteriol. 169: 5610–5614.
|
[7] | Feling P (1973) The glucose-alanine cycle. Metabolism 22: 179–207.
|
[8] | Ismond KP, Dolferus R, DePauw M, Dennis ES, Good AG (2003) Enhanced low oxygen survival in Arabidopsis through increased metabolic flux in the fermentative pathway. Plant. Physiol. 132: 1292–1302.
|
[9] | Kursteiner O, Dupuis I, Kuhlemeier C (2003) The pyruvate decarboxylase 1 gene of Arabidopsis is required during anoxia but not other environmental stresses. Plant Physiol. 132: 968–978.
|
[10] | Sato T, Harada T, Ishizawa K (2002) Stimulation of glycolisis in anaerobic elongation of pondweed (Potamogeton distinctus) turions. J. Exptl. Bot. 53: 1847–1856.
|
[11] | Ricoult C, Cliquet J-B, Limami AM (2005) Stimulation of alanine amino transferase (AlaAT) gene expression and alanine accumulation in embryo axis of the model legume Medicago truncatula contribute to anoxia stress tolerance. Physiol. Plant 123: 30–39.
|
[12] | Ricoult C, Orcaray Echeverría L, Cliquet J-B, Limami AM (2006) Characterization of alanine aminotransferase (AlaAT) multigene family and hypoxic response in young seedlings of the model legume Medicago truncatula. J. Exptl. Bot. 57: 3079–3089.
|
[13] | DeRosa G, Swick RW (1975) Metabolic implications of the distribution of the alanine aminotransferase isoenzymes. J. Biol. Chem. 250: 7961–7967.
|
[14] | McCowen SM, Phibbs PV Jr (1974) Regulation of alanine dehydrogenase in Bacillus (Licheniformis). J. Bacteriol. 118: 590–597.
|
[15] | Feng Z, Caceres NE, Sarath G, Barletta RG (2002) Mycobacterium smegmatis L-alanine dehydrogenase (Ald) is required for proficient utilization of alanine as sole nitrogen source and sustained anaerobic growth. J. Bacteriol. 184: 5001–5010.
|
[16] | Wang NC, Lee CY (2006) Molecular cloning of the aspartate 4-decarboxylase gene from Pseudomonas sp. Atcc and characterization of the bifunctional recombinant enzyme. Appl. Microbiol. Biotechnol. 73: 339–348.
|
[17] | Wolfe KH, Shields DC (1997) Molecular evidence for an ancient duplication of the entire yeast genome. Nature 387: 708–713.
|
[18] | Kellis M, Birren BW, Lander ES (2004) Proof and evolutionary analysis of ancient genome duplication in the yeast Saccharomyces cerevisiae. Nature 428: 617–624.
|
[19] | Byrne KP, Wolfe KH (2005) The Yeast Gene Order Browser: Combining curated homology and syntenic context reveals gene fate of polyploidy species. Genome Res. 15: 1456–1461.
|
[20] | García- Campusano F, Anaya VH, Robledo-Arratia L, Quezada H, Hernández H, et al (2009) ALT1-encoded alanine aminotransferase plays a central role in the metabolism of alanine in Saccharomyces cerevisiae. Can. J. Microbiol. 55: 1–7.
|
[21] | Calderon J, Morett E, Mora J (1985) ω-Amidase pathway in the degradation of glutamine in Neurospora crassa. J. Bacteriol. 161: 807–809.
|
[22] | Cooper AJ, Meister A (1977) The glutamine transaminase-ω-amidase pathway. Crit. Rev. Biochem. 4: 281–303.
|
[23] | Duran S, Du Pont G, Huerta-Zepeda A, Calderon J (1995) The role of glutaminase in Rhizobium etli: studies with a new mutant. Microbiology. 141: 2883–2889.
|
[24] | Soberon M, Gonzalez A (1987) Glutamine degradation through the omega-amidase pathway in Saccharomyces cerevisiae. J. Gen. Microbiol. 133: 9–14.
|
[25] | Soberon M, Olamendi J, Rodriguez L, Gonzalez A (1989) Role of glutamine aminotransferase in glutamine catabolism by Saccharomyces cerevisiae under microaerophilic conditions. J. Gen. Microbiol. 135: 2693–2697.
|
[26] | Blank LM, Lehmbeck F, Sauer U (2005) Metabolic flux and network analysis in fourteen hemiascomycetes yeasts. FEMS Yeast Res. 5: 545–558.
|
[27] | Duarte NC, Herrgard MJ, Palsson BO (2004) Reconstruction and validation of Saccharomyces cerevisiae iND750, a fully compartmentalized genome-scale metabolisc model. Genome Res. 14: 1298–1309.
|
[28] | Zhou H, Winston F (2001) NRG1 is required for glucose repression of the SUC2 and GAL genes of Saccharomyces cerevisiae. BMC Genet 2: 5–10.
|
[29] | Jones DT, Taylor WR, Thornton JM (1992) The rapid generation of mutation data matrices from protein sequences. Comput. Appl. Biosc. 8: 275–282.
|
[30] | Dopazo J (1994) Estimating errors and confidence intervals for branch lengths in phylogenetic trees by a bootstrap approach. J. Mol. Evo. 38: 300–304.
|
[31] | Tamura K, Peterson D, Peterson N, Stecher G, Nei M, et al. (2011) MEGA5: Molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods. Mol. Biol. Evo. 28: 2731–2739.
|
[32] | Mehta PK, Hale TI, Christen P (1993) Aminotransaferases: demonstration of homology and division into evolutionary subgroups. Eur. J. Biochem. 214: 549–561.
|
[33] | Sellick CA, Reece RJ (2005) Eukaryotic transcription factors as direct nutrient sensors. Trends Biochem Sci 30: 405–412.
|
[34] | Qui HF, Dubois E, Messenguy F (1991) Dissection of the bifunctional ARGRII protein involved in the regulation of arginine anabolic and catabolic pathways. Mol Cell Biol 11: 2169–2179.
|
[35] | Colon M, Hernandez F, Lopez K, Quezada H, Gonzalez J, et al. (2011) Saccharomyces cerevisiae Bat1 and Bat2 aminotransferases have functionally diverged from the ancestral-like Kluyveromyces lactis orthologous enzyme. PLoS ONE 6: e16099.
|
[36] | Quezada H, Aranda C, DeLuna A, Hernandez H, Calcagno ML, et al. (2008) Specialization of the paralogue LYS21 determines lysine biosynthesis under respiratory metabolism in Saccharomyces cerevisiae. Microbiol. 154: 1656–1667.
|
[37] | Scott EM, Pillus L (2010) Homocitrate synthase connects amino acid metabolism to chromatin functions through Esa1 and DNA damage. Genes Dev 17: 1903–1913.
|
[38] | Deutscher D, Meilijson I, Kupiec M, Ruppin E (2006) Multiple knockout analysis of genetic robustness in the yeast metabolic network. Nat. Genet. 38: 993–998.
|
[39] | Tong AH, Lesage G, Bader GD, Ding H, Xu H (2004) Global mapping of the yeast genetic interaction network. Science 303: 808–813.
|
[40] | Gavin AC, Boesche M, Krause R, Grandi P, Matzioch M, et al. (2002) Functional organization of the yeast proteome by systematic analysis of protein complexes. Nature 415: 141–147.
|
[41] | Vyas VK, Berkey CD, Miyao T, Carlson M (2005) Repressors Nrg1 and Nrg2 Regulate a Set of Stress-Responsive Genes in Saccharomyces cerevisiae. Eukaryotic Cell 4: 1882–1891.
|
[42] | DeLuna A, Avendano A, Riego L, Gonzalez A (2001) NADP-glutamate dehydrogenase isoenzymes of Saccharomyces cerevisiae. Purification, kinetic properties, and physiological roles. J Biol Chem 276: 43775–43783.
|
[43] | Hittinger CT, Carroll SB (2007) Gene duplication and the adaptive evolution of a classic genetic switch. Nature 440: 677–682.
|
[44] | Innan H, Kondrashov F (2010) The evolution of gene duplications: classifying and distinguishing between models. Nat. Rev. Genet. 11: 97–108.
|
[45] | Wach A, Brachat A, Alberti-Segui C, Rebischung P, Philippsen P (1997) Three new dominant drug resistance cassettes for gene disruption in Saccharomyces cerevisiae. Yeast 13: 1065–1075.
|
[46] | Yen K, Gitsham P, Wishart J, Oliver SG, Zhang N (2003) An improved tetO promoter replacement system for regulating the expression of yeast genes. Yeast 20: 1255–1262.
|
[47] | Longtine MS, McKenzie A 3rd, Demarini DJ, Shah NG, Wach A, et al (1998) Additional modules for versatile and economical PCR-based gene deletion and modification in Saccharomyces cerevisiae. Yeast 14: 953–96.
|
[48] | Goldstein AL, McCusker JH (1999) Three new dominant drug resistance cassettes for gene disruption in Saccharomyces cerevisiae. Yeast 15: 1541–1553.
|
[49] | Weinstock KG, Strathern JN (1993) Molecular Genetics in Saccharomyces kluyveri: The HIS3 Homolog and Its Use as a Selectable Marker Gene in S. kluyveri and Saccharomyces cerevisiae. Yeast 9: 351–361.
|
[50] | Struhl K, Davis RW (1981) Transcription of the his3 gene region in Saccharomyces cerevisiae. J. Mol. Biol. 152: 535–552.
|
[51] | Towbin H, Staehelin T, Gordon J (1979) Electrophoretic transfer of proteins from polyacrylamide gels to nitrocellulose sheets: procedure and some applications. Proc. Natl. Acad. Sci. USA 76: (1979) 4350–4354.
|
[52] | Hecht A, Laroche T, Strahl-Bolsinger S, Gasser SM, Grunstein M (1995) Histone H3 and H4 N-termini interact with SIR3 and SIR4 proteins: a molecular model for the formation of heterochromatin in yeast. Cell 80 583–92.
|