全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
PLOS ONE  2012 

Peripheral Nervous System Neuropathology and Progressive Sensory Impairments in a Mouse Model of Mucopolysaccharidosis IIIB

DOI: 10.1371/journal.pone.0045992

Full-Text   Cite this paper   Add to My Lib

Abstract:

The lysosomal storage pathology in Mucopolysaccharidosis (MPS) IIIB manifests in cells of virtually all organs. However, it is the profound role of the neurological pathology that leads to morbidity and mortality in this disease, and has been the major challenge to developing therapies. To date, MPS IIIB neuropathologic and therapeutic studies have focused predominantly on changes in the central nervous system (CNS), especially in the brain, and little is known about the disease pathology in the peripheral nervous system (PNS). This study demonstrates characteristic lysosomal storage pathology in dorsal root ganglia affecting neurons, satellite cells (glia) and Schwann cells. Lysosomal storage lesions were also observed in the myoenteric plexus and submucosal plexus, involving enteric neurons with enteric glial activation. Further, MPS IIIB mice developed progressive impairments in sensory functions, with significantly reduced response to pain stimulation that became detectable at 4–5 months of age as the disease progressed. These data demonstrate that MPS IIIB neuropathology manifests not only in the entire CNS but also the PNS, likely affecting both afferent and efferent neural signal transduction. This study also suggests that therapeutic development for MPS IIIB may benefit from targeting the entire nervous system.

References

[1]  Neufeld EF, Muenzer J (2001) The mucopolysaccharidoses. In: Scriver CR, Beaudet AL, Sly WS, Valle D, editors. The metabolic & molecular basis of inherited disease. 8th ed. New York; St Louis; San Francisco: McGraw-Hill. 3421–3452.
[2]  Yogalingam G, Hopwood JJ (2001) Molecular genetics of mucopolysaccharidosis type IIIA and IIIB: Diagnostic, clinical, and biological implications. Hum Mutat 18: 264–281.
[3]  Champion KJ, Basehore MJ, Wood T, Destree A, Vannuffel P, et al. (2010) Identification and characterization of a novel homozygous deletion in the alpha-N-acetylglucosaminidase gene in a patient with Sanfilippo type B syndrome (mucopolysaccharidosis IIIB). Mol Genet Metab 100: 51–56.
[4]  Li HH, Yu WH, Rozengurt N, Zhao HZ, Lyons KM, et al. (1999) Mouse model of Sanfilippo syndrome type B produced by targeted disruption of the gene encoding alpha-N-acetylglucosaminidase. Proc Natl Acad Sci U S A 96: 14505–14510.
[5]  Ellinwood NM, Wang P, Skeen T, Sharp NJ, Cesta M, et al. (2003) A model of mucopolysaccharidosis IIIB (Sanfilippo syndrome type IIIB): N-acetyl-alpha-D-glucosaminidase deficiency in Schipperke dogs. J Inherit Metab Dis 26: 489–504.
[6]  Ohmi K, Greenberg DS, Rajavel KS, Ryazantsev S, Li HH, et al. (2003) Activated microglia in cortex of mouse models of mucopolysaccharidoses I and IIIB. Proc Natl Acad Sci U S A 100: 1902–1907.
[7]  Ohmi K, Kudo LC, Ryazantsev S, Zhao HZ, Karsten SL, et al. (2009) Sanfilippo syndrome type B, a lysosomal storage disease, is also a tauopathy. Proc Natl Acad Sci U S A 106: 8332–8337.
[8]  McGlynn R, Dobrenis K, Walkley SU (2004) Differential subcellular localization of cholesterol, gangliosides, and glycosaminoglycans in murine models of mucopolysaccharide storage disorders. J Comp Neurol 480: 415–426.
[9]  Walkley SU (2007) Pathogenic mechanisms in lysosomal disease: a reappraisal of the role of the lysosome. Acta Paediatr Suppl 96: 26–32.
[10]  Villani GR, Di Domenico C, Musella A, Cecere F, Di Napoli D, et al. (2009) Mucopolysaccharidosis IIIB: oxidative damage and cytotoxic cell involvement in the neuronal pathogenesis. Brain Res 1279: 99–108.
[11]  Villani GR, Gargiulo N, Faraonio R, Castaldo S, Gonzalez YRE, et al. (2007) Cytokines, neurotrophins, and oxidative stress in brain disease from mucopolysaccharidosis IIIB. J Neurosci Res 85: 612–622.
[12]  DiRosario J, Divers E, Wang C, Etter J, Charrier A, et al. (2009) Innate and adaptive immune activation in the brain of MPS IIIB mouse model. J Neurosci Res 87: 978–990.
[13]  Killedar S, Dirosario J, Divers E, Popovich PG, McCarty DM, et al. (2010) Mucopolysaccharidosis IIIB, a lysosomal storage disease, triggers a pathogenic CNS autoimmune response. J Neuroinflammation 7: 39.
[14]  McCarty DM, DiRosario J, Gulaid K, Killedar S, Oosterhof A, et al. (2011) Differential distribution of heparan sulfate glycoforms and elevated expression of heparan sulfate biosynthetic enzyme genes in the brain of mucopolysaccharidosis IIIB mice. Metab Brain Dis 26: 9–19.
[15]  Piotrowska E, Jakobkiewicz-Banecka J, Tylki-Szymanska A, Czartoryska B, Wegrzyn A, et al. (2009) Correlation between severity of mucopolysaccharidoses and combination of the residual enzyme activity and efficiency of glycosaminoglycan synthesis. Acta Paediatr 98: 743–749.
[16]  Heldermon CD, Hennig AK, Ohlemiller KK, Ogilvie JM, Herzog ED, et al. (2007) Development of sensory, motor and behavioral deficits in the murine model of Sanfilippo syndrome type B. PLoS One. 2: e772.
[17]  Fu H, DiRosario J, Kang L, Muenzer J, McCarty DM (2010) Restoration of central nervous system alpha-N-acetylglucosaminidase activity and therapeutic benefits in mucopolysaccharidosis IIIB mice by a single intracisternal recombinant adeno-associated viral type 2 vector delivery. J Gene Med 12: 624–633.
[18]  Fu H, Dirosario J, Killedar S, Zaraspe K, McCarty DM (2011) Correction of neurological disease of mucopolysaccharidosis IIIB in adult mice by rAAV9 trans-blood-brain barrier gene delivery. Mol Ther 19: 1025–1033.
[19]  Fu H, Kang L, Jennings JS, Moy SS, Perez A, et al. (2007) Significantly increased lifespan and improved behavioral performances by rAAV gene delivery in adult mucopolysaccharidosis IIIB mice. Gene Ther 14: 1065–1077.
[20]  McCarty DM, DiRosario J, Gulaid K, Muenzer J, Fu H (2009) Mannitol-facilitated CNS entry of rAAV2 vector significantly delayed the neurological disease progression in MPS IIIB mice. Gene Ther 16: 1340–1352.
[21]  Heldermon CD, Ohlemiller KK, Herzog ED, Vogler C, Qin E, et al. (2010) Therapeutic efficacy of bone marrow transplant, intracranial AAV-mediated gene therapy, or both in the mouse model of MPS IIIB. Mol Ther 18: 873–880.
[22]  Chaplan SR, Bach FW, Pogrel JW, Chung JM, Yaksh TL (1994) Quantitative assessment of tactile allodynia in the rat paw. J Neurosci Methods 53: 55–63.
[23]  Berge OG, Garcia-Cabrera I, Hole K (1988) Response latencies in the tail-flick test depend on tail skin temperature. Neurosci Lett 86: 284–288.
[24]  Hargreaves K, Dubner R, Brown F, Flores C, Joris J (1988) A new and sensitive method for measuring thermal nociception in cutaneous hyperalgesia. Pain 32: 77–88.
[25]  Valstar MJ, Ruijter GJ, van Diggelen OP, Poorthuis BJ, Wijburg FA (2008) Sanfilippo syndrome: A mini-review. J Inherit Metab Dis.
[26]  Ausseil J, Desmaris N, Bigou S, Attali R, Corbineau S, et al. (2008) Early neurodegeneration progresses independently of microglial activation by heparan sulfate in the brain of mucopolysaccharidosis IIIB mice. PLoS One 3: e2296.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133