The Amyloid Precursor Protein (APP) undergoes sequential proteolytic cleavages through the action of β- and γ-secretase, which result in the generation of toxic β-amyloid (Aβ) peptides and a C-terminal fragment consisting of the intracellular domain of APP (AICD). Mutations leading to increased APP levels or alterations in APP cleavage cause familial Alzheimer's disease (AD). Thus, identification of factors that regulate APP steady state levels and/or APP cleavage by γ-secretase is likely to provide insight into AD pathogenesis. Here, using transgenic flies that act as reporters for endogenous γ-secretase activity and/or APP levels (GAMAREP), and for the APP intracellular domain (AICDREP), we identified mutations in X11L and ubiquilin (ubqn) as genetic modifiers of APP. Human homologs of both X11L (X11/Mint) and Ubqn (UBQLN1) have been implicated in AD pathogenesis. In contrast to previous reports, we show that overexpression of X11L or human X11 does not alter γ-secretase cleavage of APP or Notch, another γ-secretase substrate. Instead, expression of either X11L or human X11 regulates APP at the level of the AICD, and this activity requires the phosphotyrosine binding (PTB) domain of X11. In contrast, Ubqn regulates the levels of APP: loss of ubqn function leads to a decrease in the steady state levels of APP, while increased ubqn expression results in an increase in APP levels. Ubqn physically binds to APP, an interaction that depends on its ubiquitin-associated (UBA) domain, suggesting that direct physical interactions may underlie Ubqn-dependent regulation of APP. Together, our studies identify X11L and Ubqn as in vivo regulators of APP. Since increased expression of X11 attenuates Aβ production and/or secretion in APP transgenic mice, but does not act on γ-secretase directly, X11 may represent an attractive therapeutic target for AD.
References
[1]
Selkoe DJ (2001) Alzheimer's disease: genes, proteins, and therapy. Physiol Rev 81: 741–766.
[2]
Edbauer D, Winkler E, Regula JT, Pesold B, Steiner H, et al. (2003) Reconstitution of gamma-secretase activity. Nat Cell Biol 5: 486–488.
[3]
Iwatsubo T (2004) The gamma-secretase complex: machinery for intramembrane proteolysis. Curr Opin Neurobiol 14: 379–383.
[4]
Goate A, Chartier-Harlin MC, Mullan M, Brown J, Crawford F, et al. (1991) Segregation of a missense mutation in the amyloid precursor protein gene with familial Alzheimer's disease. Nature 349: 704–706.
[5]
Levy-Lahad E, Wasco W, Poorkaj P, Romano DM, Oshima J, et al. (1995) Candidate gene for the chromosome 1 familial Alzheimer's disease locus. Science 269: 973–977.
[6]
Rogaev EI, Sherrington R, Rogaeva EA, Levesque G, Ikeda M, et al. (1995) Familial Alzheimer's disease in kindreds with missense mutations in a gene on chromosome 1 related to the Alzheimer's disease type 3 gene. Nature 376: 775–778.
[7]
Sherrington R, Rogaev EI, Liang Y, Rogaeva EA, Levesque G, et al. (1995) Cloning of a gene bearing missense mutations in early-onset familial Alzheimer's disease. Nature 375: 754–760.
[8]
Rovelet-Lecrux A, Hannequin D, Raux G, Le Meur N, Laquerriere A, et al. (2006) APP locus duplication causes autosomal dominant early-onset Alzheimer disease with cerebral amyloid angiopathy. Nat Genet 38: 24–26.
[9]
Theuns J, Brouwers N, Engelborghs S, Sleegers K, Bogaerts V, et al. (2006) Promoter mutations that increase amyloid precursor-protein expression are associated with Alzheimer disease. Am J Hum Genet 78: 936–946.
[10]
Cao X, Sudhof TC (2001) A transcriptionally [correction of transcriptively] active complex of APP with Fe65 and histone acetyltransferase Tip60. Science 293: 115–120.
[11]
Pardossi-Piquard R, Petit A, Kawarai T, Sunyach C, Alves da Costa C, et al. (2005) Presenilin-dependent transcriptional control of the Abeta-degrading enzyme neprilysin by intracellular domains of betaAPP and APLP. Neuron 46: 541–554.
[12]
Ryan KA, Pimplikar SW (2005) Activation of GSK-3 and phosphorylation of CRMP2 in transgenic mice expressing APP intracellular domain. J Cell Biol 171: 327–335.
[13]
Zhang YW, Wang R, Liu Q, Zhang H, Liao FF, et al. (2007) Presenilin/gamma-secretase-dependent processing of beta-amyloid precursor protein regulates EGF receptor expression. Proc Natl Acad Sci U S A 104: 10613–10618.
[14]
Galvan V, Gorostiza OF, Banwait S, Ataie M, Logvinova AV, et al. (2006) Reversal of Alzheimer's-like pathology and behavior in human APP transgenic mice by mutation of Asp664. Proc Natl Acad Sci U S A 103: 7130–7135.
[15]
Alves da Costa C, Sunyach C, Pardossi-Piquard R, Sevalle J, Vincent B, et al. (2006) Presenilin-dependent gamma-secretase-mediated control of p53-associated cell death in Alzheimer's disease. J Neurosci 26: 6377–6385.
[16]
Muller T, Concannon CG, Ward MW, Walsh CM, Tirniceriu AL, et al. (2007) Modulation of gene expression and cytoskeletal dynamics by the amyloid precursor protein intracellular domain (AICD). Mol Biol Cell 18: 201–210.
[17]
Kimberly WT, Zheng JB, Guenette SY, Selkoe DJ (2001) The intracellular domain of the beta-amyloid precursor protein is stabilized by Fe65 and translocates to the nucleus in a notch-like manner. J Biol Chem 276: 40288–40292.
[18]
Roncarati R, Sestan N, Scheinfeld MH, Berechid BE, Lopez PA, et al. (2002) The gamma-secretase-generated intracellular domain of beta-amyloid precursor protein binds Numb and inhibits Notch signaling. Proc Natl Acad Sci U S A 99: 7102–7107.
[19]
Kim HS, Kim EM, Lee JP, Park CH, Kim S, et al. (2003) C-terminal fragments of amyloid precursor protein exert neurotoxicity by inducing glycogen synthase kinase-3beta expression. Faseb J 17: 1951–1953.
[20]
Hoareau C, Borrell V, Soriano E, Krebs MO, Prochiantz A, et al. (2008) Amyloid precursor protein cytoplasmic domain antagonizes reelin neurite outgrowth inhibition of hippocampal neurons. Neurobiol Aging 29: 542–553.
[21]
Hamid R, Kilger E, Willem M, Vassallo N, Kostka M, et al. (2007) Amyloid precursor protein intracellular domain modulates cellular calcium homeostasis and ATP content. J Neurochem 102: 1264–1275.
[22]
Rogelj B, Mitchell JC, Miller CC, McLoughlin DM (2006) The X11/Mint family of adaptor proteins. Brain Res Rev 52: 305–315.
[23]
McLoughlin DM, Irving NG, Brownlees J, Brion JP, Leroy K, et al. (1999) Mint2/X11-like colocalizes with the Alzheimer's disease amyloid precursor protein and is associated with neuritic plaques in Alzheimer's disease. Eur J Neurosci 11: 1988–1994.
[24]
Jacobs EJ, Williams RJ, Francis PT (2006) Cyclin-dependent kinase 5, Munc 18a and Munc 18-interacting protein 1/X11alpha protein upregulation in Alzheimer's disease. Neuroscience 138: 511–522.
[25]
Borg JP, Yang Y, De Taddeo-Borg M, Margolis B, Turner RS (1998) The X11alpha protein slows cellular amyloid precursor protein processing and reduces Abeta40 and Abeta42 secretion. J Biol Chem 273: 14761–14766.
[26]
Tomita S, Ozaki T, Taru H, Oguchi S, Takeda S, et al. (1999) Interaction of a neuron-specific protein containing PDZ domains with Alzheimer's amyloid precursor protein. J Biol Chem 274: 2243–2254.
[27]
Sastre M, Turner RS, Levy E (1998) X11 interaction with beta-amyloid precursor protein modulates its cellular stabilization and reduces amyloid beta-protein secretion. J Biol Chem 273: 22351–22357.
[28]
Lee JH, Lau KF, Perkinton MS, Standen CL, Shemilt SJ, et al. (2003) The neuronal adaptor protein X11alpha reduces Abeta levels in the brains of Alzheimer's APPswe Tg2576 transgenic mice. J Biol Chem 278: 47025–47029.
[29]
Lee JH, Lau KF, Perkinton MS, Standen CL, Rogelj B, et al. (2004) The neuronal adaptor protein X11beta reduces amyloid beta protein levels and amyloid plaques formation in the brains of transgenic mice. J Biol Chem 279: 49099–49104.
[30]
Borg JP, Ooi J, Levy E, Margolis B (1996) The phosphotyrosine interaction domains of X11 and FE65 bind to distinct sites on the YENPTY motif of amyloid precursor protein. Mol Cell Biol 16: 6229–6241.
[31]
McLoughlin DM, Miller CC (1996) The intracellular cytoplasmic domain of the Alzheimer's disease amyloid precursor protein interacts with phosphotyrosine-binding domain proteins in the yeast two-hybrid system. FEBS Lett 397: 197–200.
[32]
Biederer T, Cao X, Sudhof TC, Liu X (2002) Regulation of APP-dependent transcription complexes by Mint/X11s: differential functions of Mint isoforms. J Neurosci 22: 7340–7351.
[33]
King GD, Perez RG, Steinhilb ML, Gaut JR, Turner RS (2003) X11alpha modulates secretory and endocytic trafficking and metabolism of amyloid precursor protein: mutational analysis of the YENPTY sequence. Neuroscience 120: 143–154.
[34]
Araki Y, Tomita S, Yamaguchi H, Miyagi N, Sumioka A, et al. (2003) Novel cadherin-related membrane proteins, Alcadeins, enhance the X11-like protein-mediated stabilization of amyloid beta-protein precursor metabolism. J Biol Chem 278: 49448–49458.
[35]
Lau KF, McLoughlin DM, Standen C, Miller CC (2000) X11 alpha and x11 beta interact with presenilin-1 via their PDZ domains. Mol Cell Neurosci 16: 557–565.
[36]
King GD, Cherian K, Turner RS (2004) X11alpha impairs gamma- but not beta-cleavage of amyloid precursor protein. J Neurochem 88: 971–982.
[37]
Mah AL, Perry G, Smith MA, Monteiro MJ (2000) Identification of ubiquilin, a novel presenilin interactor that increases presenilin protein accumulation. J Cell Biol 151: 847–862.
[38]
Davidson JD, Riley B, Burright EN, Duvick LA, Zoghbi HY, et al. (2000) Identification and characterization of an ataxin-1-interacting protein: A1Up, a ubiquitin-like nuclear protein. Hum Mol Genet 9: 2305–2312.
[39]
Blacker D, Bertram L, Saunders AJ, Moscarillo TJ, Albert MS, et al. (2003) Results of a high-resolution genome screen of 437 Alzheimer's disease families. Hum Mol Genet 12: 23–32.
[40]
Myers A, Wavrant De-Vrieze F, Holmans P, Hamshere M, Crook R, et al. (2002) Full genome screen for Alzheimer disease: stage II analysis. Am J Med Genet 114: 235–244.
[41]
Bertram L, Hiltunen M, Parkinson M, Ingelsson M, Lange C, et al. (2005) Family-based association between Alzheimer's disease and variants in UBQLN1. N Engl J Med 352: 884–894.
[42]
Kamboh MI, Minster RL, Feingold E, DeKosky ST (2006) Genetic association of ubiquilin with Alzheimer's disease and related quantitative measures. Mol Psychiatry 11: 273–279.
[43]
Slifer MA, Martin ER, Bronson PG, Browning-Large C, Doraiswamy PM, et al. (2006) Lack of association between UBQLN1 and Alzheimer disease. Am J Med Genet Neuropsychiatr Genet 141: 208–213.
[44]
Smemo S, Nowotny P, Hinrichs AL, Kauwe JS, Cherny S, et al. (2006) Ubiquilin 1 polymorphisms are not associated with late-onset Alzheimer's disease. Ann Neurol 59: 21–26.
[45]
Brouwers N, Sleegers K, Engelborghs S, Bogaerts V, van Duijn CM, et al. (2006) The UBQLN1 polymorphism, UBQ-8i, at 9q22 is not associated with Alzheimer's disease with onset before 70 years. Neurosci Lett 392: 72–74.
[46]
Bensemain F, Chapuis J, Tian J, Shi J, Thaker U, et al. (2006) Association study of the Ubiquilin gene with Alzheimer's disease. Neurobiol Dis 22: 691–693.
[47]
Ganguly A, Feldman RM, Guo M (2008) ubiquilin antagonizes presenilin and promotes neurodegeneration in Drosophila. Hum Mol Genet 17: 293–302.
[48]
Li A, Xie Z, Dong Y, McKay KM, McKee ML, et al. (2007) Isolation and characterization of the Drosophila ubiquilin ortholog dUbqln: In vivo interaction with early-onset Alzheimer disease genes. Hum Mol Genet 16: 2626–2639.
[49]
Hiltunen M, Lu A, Thomas AV, Romano DM, Kim M, et al. (2006) Ubiquilin 1 modulates amyloid precursor protein trafficking and abeta secretion. J Biol Chem 281: 32240–32253.
[50]
Zhang C, Khandelwal PJ, Chakraborty R, Cuellar TL, Sarangi S, et al. (2007) An AICD-based functional screen to identify APP metabolism regulators. Mol Neurodegener 2: 15.
[51]
Marsh JL, Thompson LM (2006) Drosophila in the study of neurodegenerative disease. Neuron 52: 169–178.
[52]
Sang TK, Jackson GR (2005) Drosophila models of neurodegenerative disease. NeuroRx 2: 438–446.
[53]
Clark IE, Dodson MW, Jiang C, Cao JH, Huh JR, et al. (2006) Drosophila pink1 is required for mitochondrial function and interacts genetically with parkin. Nature 441: 1162–1166.
[54]
Dodson MW, Guo M (2007) Pink1, Parkin, DJ-1 and mitochondrial dysfunction in Parkinson's disease. Curr Opin Neurobiol 17: 331–337.
[55]
Luo LQ, Martin-Morris LE, White K (1990) Identification, secretion, and neural expression of APPL, a Drosophila protein similar to human amyloid protein precursor. J Neurosci 10: 3849–3861.
[56]
Hu Y, Fortini ME (2003) Different cofactor activities in gamma-secretase assembly: evidence for a nicastrin-Aph-1 subcomplex. J Cell Biol 161: 685–690.
[57]
Takasugi N, Tomita T, Hayashi I, Tsuruoka M, Niimura M, et al. (2003) The role of presenilin cofactors in the gamma-secretase complex. Nature 422: 438–441.
[58]
Fossgreen A, Bruckner B, Czech C, Masters CL, Beyreuther K, et al. (1998) Transgenic Drosophila expressing human amyloid precursor protein show gamma-secretase activity and a blistered-wing phenotype. Proc Natl Acad Sci U S A 95: 13703–13708.
[59]
Guo M, Hong EJ, Fernandes J, Zipursky SL, Hay BA (2003) A reporter for amyloid precursor protein gamma-secretase activity in Drosophila. Hum Mol Genet 12: 2669–2678.
[60]
Greeve I, Kretzschmar D, Tschape JA, Beyn A, Brellinger C, et al. (2004) Age-dependent neurodegeneration and Alzheimer-amyloid plaque formation in transgenic Drosophila. J Neurosci 24: 3899–3906.
[61]
Hase M, Yagi Y, Taru H, Tomita S, Sumioka A, et al. (2002) Expression and characterization of the Drosophila X11-like/Mint protein during neural development. J Neurochem 81: 1223–1232.
[62]
Hay BA, Huh JR, Guo M (2004) The genetics of cell death: approaches, insights and opportunities in Drosophila. Nat Rev Genet 5: 911–922.
[63]
Hay BA, Guo M (2006) Caspase-Dependent Cell Death in Drosophila. Annu Rev Cell Dev Biol 22: 623–650.
[64]
Yoo SJ, Huh JR, Muro I, Yu H, Wang L, et al. (2002) Hid, Rpr and Grim negatively regulate DIAP1 levels through distinct mechanisms. Nat Cell Biol 4: 416–424.
[65]
Artavanis-Tsakonas S, Rand MD, Lake RJ (1999) Notch signaling: cell fate control and signal integration in development. Science 284: 770–776.
[66]
Guo M, Jan LY, Jan YN (1996) Control of daughter cell fates during asymmetric division: interaction of Numb and Notch. Neuron 17: 27–41.
Cagan RL, Ready DF (1989) Notch is required for successive cell decisions in the developing Drosophila retina. Genes Dev 3: 1099–1112.
[69]
von Rotz RC, Kohli BM, Bosset J, Meier M, Suzuki T, et al. (2004) The APP intracellular domain forms nuclear multiprotein complexes and regulates the transcription of its own precursor. J Cell Sci 117: 4435–4448.
[70]
Sumioka A, Saito Y, Sakuma M, Araki Y, Yamamoto T, et al. (2008) The X11L/X11beta/MINT2 and X11L2/X11gamma/MINT3 scaffold proteins shuttle between the nucleus and cytoplasm. Exp Cell Res 314: 1155–1162.
[71]
Loewer A, Soba P, Beyreuther K, Paro R, Merdes G (2004) Cell-type-specific processing of the amyloid precursor protein by Presenilin during Drosophila development. EMBO Rep 5: 405–411.
[72]
Parks AL, Curtis D (2007) Presenilin diversifies its portfolio. Trends Genet 23: 140–150.
[73]
Vetrivel KS, Zhang YW, Xu H, Thinakaran G (2006) Pathological and physiological functions of presenilins. Mol Neurodegener 1: 4.
[74]
Chen CH, Huang H, Ward CM, Su JT, Schaeffer LV, et al. (2007) A Synthetic Maternal-Effect Selfish Genetic Element Drives Population Replacement in Drosophila. Science 316: 597–600.
[75]
Ashley J, Packard M, Ataman B, Budnik V (2005) Fasciclin II signals new synapse formation through amyloid precursor protein and the scaffolding protein dX11/Mint. J Neurosci 25: 5943–5955.
[76]
Vishnu S, Hertenstein A, Betschinger J, Knoblich JA, Gert de Couet H, et al. (2006) The adaptor protein X11Lalpha/Dmint1 interacts with the PDZ-binding domain of the cell recognition protein Rst in Drosophila. Dev Biol 289: 296–307.