Early theorists (Freud and Darwin) speculated that extremely shy children, or those with anxious temperament, were likely to have anxiety problems as adults. More recent studies demonstrate that these children have heightened responses to potentially threatening situations reacting with intense defensive responses that are characterized by behavioral inhibition (BI) (inhibited motor behavior and decreased vocalizations) and physiological arousal. Confirming the earlier impressions, data now demonstrate that children with this disposition are at increased risk to develop anxiety, depression, and comorbid substance abuse.?Additional key features of anxious temperament are that it appears at a young age, it is a stable characteristic of individuals, and even in non-threatening environments it is associated with increased psychic anxiety and somatic tension. To understand the neural underpinnings of anxious temperament, we performed imaging studies with 18-fluoro-deoxyglucose (FDG) high-resolution Positron Emission Tomography (PET) in young rhesus monkeys. Rhesus monkeys were used because they provide a well validated model of anxious temperament for studies that cannot be performed in human children. Imaging the same animal in stressful and secure contexts, we examined the relation between regional metabolic brain activity and a trait-like measure of anxious temperament that encompasses measures of BI and pituitary-adrenal reactivity. Regardless of context, results demonstrated a trait-like pattern of brain activity (amygdala, bed nucleus of stria terminalis, hippocampus, and periaqueductal gray) that is predictive of individual phenotypic differences. Importantly, individuals with extreme anxious temperament also displayed increased activity of this circuit when assessed in the security of their home environment. These findings suggest that increased activity of this circuit early in life mediates the childhood temperamental risk to develop anxiety and depression. In addition, the findings provide an explanation for why individuals with anxious temperament have difficulty relaxing in environments that others perceive as non-stressful.
References
[1]
Biederman J, Hirshfeld-Becker DR, Rosenbaum JF, Herot C, Friedman D, et al. (2001) Further evidence of association between behavioral inhibition and social anxiety in children. Am J Psychiatry 158(10): 1673–1679.
[2]
Caspi A, Silva PA (1995) Temperamental qualities at age three predict personality traits in young adulthood: Longitudinal evidence from a birth cohort. Child Dev 66(2): 486–498.
[3]
Fox NA, Henderson HA, Marshall PJ, Nichols KE, Ghera MM (2005) Behavioral inhibition: Linking biology and behavior within a developmental framework. Annu Rev Psychol 56: 235–262.
[4]
Davidson RJ, Jackson DC, Kalin NH (2000) Emotion, plasticity, context, and regulation: Perspectives from affective neuroscience. Psychol Bull 126(6): 890–909.
[5]
Kalin NH, Shelton SE (2003) Nonhuman primate models to study anxiety, emotion regulation, and psychopathology. Ann N Y Acad Sci 1008: 189–200.
[6]
Kalin NH, Shelton SE (1989) Defensive behaviors in infant rhesus monkeys: Environmental cues and neurochemical regulation. Science 243(4899): 1718–1721.
Kalin NH, Shelton SE, Davidson RJ (2004) The role of the central nucleus of the amygdala in mediating fear and anxiety in the primate. J Neurosci 24(24): 5506–5515.
[9]
Emery NJ, Capitanio JP, Mason WA, Machado CJ, Mendoza SP, et al. (2001) The effects of bilateral lesions of the amygdala on dyadic social interactions in rhesus monkeys (macaca mulatta). Behav Neurosci 115(3): 515–544.
[10]
Fox AS, Oakes TR, Shelton SE, Converse AK, Davidson RJ, et al. (2005) Calling for help is independently modulated by brain systems underlying goal-directed behavior and threat perception. Proc Natl Acad Sci U S A 102(11): 4176–4179.
[11]
Phelps ME, Hoffman EJ, Selin C, Huang SC, Robinson G, et al. (1978) Investigation of [18F]2-fluoro-2-deoxyglucose for the measure of myocardial glucose metabolism. J Nucl Med 19(12): 1311–1319.
[12]
Rilling JK, Winslow JT, O'Brien D, Gutman DA, Hoffman JM, et al. (2001) Neural correlates of maternal separation in rhesus monkeys. Biol Psychiatry 49(2): 146–157.
[13]
Kagan J, Reznick JS, Snidman N (1988) Biological bases of childhood shyness. Science 240(4849): 167–171.
[14]
Oakes TR, Fox AS, Johnstone T, Chung MK, Kalin N, et al. (2007) Integrating VBM into the general linear model with voxelwise anatomical covariates. Neuroimage 34(2): 500–508.
[15]
Genovese CR, Lazar NA, Nichols T (2002) Thresholding of statistical maps in functional neuroimaging using the false discovery rate. Neuroimage 15(4): 870–878.
[16]
Nichols T, Brett M, Andersson J, Wager T, Poline JB (2005) Valid conjunction inference with the minimum statistic. Neuroimage 25(3): 653–660.
[17]
Jernigan TL, Gamst AC, Fennema-Notestine C, Ostergaard AL (2003) More “mapping” in brain mapping: Statistical comparison of effects. Hum Brain Mapp 19(2): 90–95.
[18]
LeDoux JE (2000) Emotion circuits in the brain. Annu Rev Neurosci 23: 155–184.
[19]
Davis M, Whalen PJ (2001) The amygdala: Vigilance and emotion. Mol Psychiatry 6(1): 13–34.
[20]
Heimer L, Harlan RE, Alheid GF, Garcia MM, de Olmos J (1997) Substantia innominata: A notion which impedes clinical-anatomical correlations in neuropsychiatric disorders. Neuroscience 76(4): 957–1006.
[21]
Herman JP, Ostrander MM, Mueller NK, Figueiredo H (2005) Limbic system mechanisms of stress regulation: Hypothalamo-pituitary-adrenocortical axis. Prog Neuropsychopharmacol Biol Psychiatry 29(8): 1201–1213.
[22]
LaBar KS, Cabeza R (2006) Cognitive neuroscience of emotional memory. Nat Rev Neurosci 7(1): 54–64.
[23]
Bandler R, Shipley MT (1994) Columnar organization in the midbrain periaqueductal gray: Modules for emotional expression? Trends Neurosci 17(9): 379–389.
[24]
Kagan J (2007) Using the proper vocabulary. Dev Psychobiol 50: 4–8.
[25]
Kalin NH, Shelton SE, Fox AS, Oakes TR, Davidson RJ (2005) Brain regions associated with the expression and contextual regulation of anxiety in primates. Biol Psychiatry 58(10): 796–804.
[26]
Farquhar TH, Chatziioannou A, Cherry SR (1998) An evaluation of exact and approximate 3-D reconstruction algorithms for a high-resolution, small-animal PET scanner. IEEE Trans Med Imaging 17(6): 1073–1080.
[27]
Chatziioannou AF, Cherry SR, Shao Y, Silverman RW, Meadors K, et al. (1999) Performance evaluation of microPET: A high-resolution lutetium oxyorthosilicate PET scanner for animal imaging. J Nucl Med 40(7): 1164–1175.
[28]
Knoess C, Siegel S, Smith A, Newport D, Richerzhagen N, et al. (2003) Performance evaluation of the microPET R4 PET scanner for rodents. Eur J Nucl Med Mol Imaging 30(5): 737–747.
[29]
Paxinos G, Huang X, Toga A (2000) The rhesus monkey brain in stereotaxic coordinates. San Diego: Academic Press.
[30]
Jenkinson M, Bannister P, Brady M, Smith S (2002) Improved optimization for the robust and accurate linear registration and motion correction of brain images. Neuroimage 17(2): 825–841.
[31]
Woods RP, Grafton ST, Holmes CJ, Cherry SR, Mazziotta JC (1998) Automated image registration: I. general methods and intrasubject, intramodality validation. J Comput Assist Tomogr 22(1): 139–152.
[32]
Zhang Y, Brady M, Smith S (2001) Segmentation of brain MR images through a hidden markov random field model and the expectation-maximization algorithm. IEEE Trans Med Imaging 20(1): 45–57.
[33]
Friston KJ, Holmes AP, Poline JB, Grasby PJ, Williams SC, et al. (1995) Analysis of fMRI time-series revisited. Neuroimage 2(1): 45–53.
[34]
Worsley KJ, Poline JB, Friston KJ, Evans AC (1997) Characterizing the response of PET and fMRI data using multivariate linear models. Neuroimage 6(4): 305–319.
[35]
Drevets WC, Videen TQ, MacLeod AK, Haller JW, Raichle ME (1992) PET images of blood flow changes during anxiety: Correction. Science 256(5064): 1696.