全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
PLOS ONE  2008 

Potential Effects of Oilseed Rape Expressing Oryzacystatin-1 (OC-1) and of Purified Insecticidal Proteins on Larvae of the Solitary Bee Osmia bicornis

DOI: 10.1371/journal.pone.0002664

Full-Text   Cite this paper   Add to My Lib

Abstract:

Despite their importance as pollinators in crops and wild plants, solitary bees have not previously been included in non-target testing of insect-resistant transgenic crop plants. Larvae of many solitary bees feed almost exclusively on pollen and thus could be highly exposed to transgene products expressed in the pollen. The potential effects of pollen from oilseed rape expressing the cysteine protease inhibitor oryzacystatin-1 (OC-1) were investigated on larvae of the solitary bee Osmia bicornis ( = O. rufa). Furthermore, recombinant OC-1 (rOC-1), the Bt toxin Cry1Ab and the snowdrop lectin Galanthus nivalis agglutinin (GNA) were evaluated for effects on the life history parameters of this important pollinator. Pollen provisions from transgenic OC-1 oilseed rape did not affect overall development. Similarly, high doses of rOC-1 and Cry1Ab as well as a low dose of GNA failed to cause any significant effects. However, a high dose of GNA (0.1%) in the larval diet resulted in significantly increased development time and reduced efficiency in conversion of pollen food into larval body weight. Our results suggest that OC-1 and Cry1Ab expressing transgenic crops would pose a negligible risk for O. bicornis larvae, whereas GNA expressing plants could cause detrimental effects, but only if bees were exposed to high levels of the protein. The described bioassay with bee brood is not only suitable for early tier non-target tests of transgenic plants, but also has broader applicability to other crop protection products.

References

[1]  James C (2007) Global Status of Commercialized Biotech/GM Crops: 2007. ISAAA Brief No. 37. Ithaca, NY: ISAAA.
[2]  Christou P, Capell T, Kohli A, Gatehouse JA, Gatehouse AMR (2006) Recent developments and future prospects in insect pest control in transgenic crops. Trends Plant Sci 11(6): 302–308.
[3]  Ferry N, Edwards M, Gatehouse J, Capell T, Christou P, et al. (2006) Transgenic plants for insect pest control: A forward looking scientific perspective. Transgenic Res 15(1): 13–19.
[4]  Klein AM, Vaissière BE, Cane JH, Steffan-Dewenter I, Cunningham SA, et al. (2007) Importance of pollinators in changing landscapes for world crops. Proc R Soc B 274(1608): 303–313.
[5]  McGregor SE (1976) Insect pollination of cultivated crop plants. Version with some updated information for some crop species available at http://gears.tucson.ars.ag.gov/book/: U.S.D.A.
[6]  O'Toole C (1993) Diversity of native bees and agroecosystems. In: LaSalle J, Gould ID, editors. Hymenoptera and biodiversity. London: CAB International. pp. 169–196.
[7]  Greenleaf SS, Kremen C (2006) Wild bees enhance honey bees' pollination of hybrid sunflower. PNAS 103(37): 13890–13895.
[8]  Winfree R, Williams NM, Dushoff J, Kremen C (2007) Native bees provide insurance against ongoing honey bee losses. Ecol Lett 10(11): 1105–1113.
[9]  Corbet SA, Williams IH, Osborne JL (1991) Bees and the pollination of crops and wild flowers in the European Community. Bee World 72(2): 47–59.
[10]  Westerkamp C, Gottsberger G (2000) Diversity pays in crop pollination. Crop Sci 40(5): 1209–1222.
[11]  Free JB (1993) Insect pollination of crops. London: Academic Press.
[12]  Bosch J, Sgolastra F, Kemp WP (in press) Ecophysiology of the life cycle in Osmia mason bees used as crop pollinators. In: James RR, Pitts-Singer TL, editors. Bee pollination in agricultural ecosystems. New York: Oxford University Press.
[13]  Bosch J, Kemp WP, Trostle GE (2006) Bee population returns and cherry yields in an orchard pollinated with Osmia lignaria (Hymenoptera: Megachilidae). J Econ Entomol 99(2): 408–413.
[14]  Roshchina VV, Roshchina VD (1993) The excretory function of higher plants. Berlin: Springer.
[15]  Roulston TH, Cane JH, Buchmann SL (2000) What governs protein content of pollen: Pollinator preferences, pollen-pistil interactions, or phylogeny? Ecol Monogr 70(4): 617–643.
[16]  Fearing PL, Brown D, Vlachos D, Meghji M, Privalle L (1997) Quantitative analysis of CryIA(b) expression in Bt maize plants, tissues, and silage and stability of expression over successive generations. Mol Breeding 3(3): 169–176.
[17]  Malone LA, Tregidga EL, Todd JH, Burgess EPJ, Philip BA, et al. (2002) Effects of ingestion of a biotin-binding protein on adult and larval honey bees. Apidologie 33(5): 447–458.
[18]  Babendreier D, Kalberer N, Romeis J, Fluri P, Bigler F (2004) Pollen consumption in honey bee larvae: a step forward in the risk assessment of transgenic plants. Apidologie 35(3): 293–300.
[19]  Wcislo WT, Cane JH (1996) Floral resource utilization by solitary bees (Hymenoptera: Apoidea) and exploitation of their stored foods by natural enemies. Annu Rev Entomol 41: 257–286.
[20]  Malone LA, Pham-Delègue MH (2001) Effects of transgene products on honey bees (Apis mellifera) and bumblebees (Bombus sp.). Apidologie 32(4): 287–304.
[21]  Br?dsgaard HF, Br?dsgaard CJ, Hansen H, L?vei GL (2003) Environmental risk assessment of transgene products using honey bee (Apis mellifera) larvae. Apidologie 34(2): 139–145.
[22]  Hanley AV, Huang ZY, Pett WL (2003) Effects of dietary transgenic Bt corn pollen on larvae of Apis mellifera and Galleria mellonella. J Apic Res 42(4): 77–81.
[23]  Lehrman A (2007) Does pea lectin expressed transgenically in oilseed rape (Brassica napus) influence honey bee (Apis mellifera) larvae? Environ Biosafety Res 6(4): 271–278.
[24]  Tasei JN (2002) Impact of agrochemicals on non-Apis bees. In: Devillers J, Pham-Delègue MH, editors. Honey bees: Estimating the environmental impact of chemicals. London: Taylor & Francis. pp. 101–131.
[25]  Tasei JN, Carre S, Moscatelli B, Grondeau C (1988) Research of the Ld-50 of deltamethrin (Decis) on the alfalfa leafcutter bee Megachile rotundata F. and the effects of sublethal doses on adults and larvae. Apidologie 19(3): 291–306.
[26]  Peach ML, Alston DG, Tepedino VJ (1994) Bees and bran bait - Is carbaryl bran bait lethal to alfalfa leafcutting bee (Hymenoptera: Megachilidae) adults or larvae? J Econ Entomol 87(2): 311–317.
[27]  Tesoriero D, Maccagnani B, Santi F, Celli G (2003) Toxicity of three pesticides on larval instars of Osmia cornuta: preliminary results. Bulletin of Insectology 56(1): 169–171.
[28]  Rose R, Dively GP, Pettis J (2007) Effects of Bt corn pollen on honey bees: Emphasis on protocol development. Apidologie 38(4): 368–377.
[29]  Duan JJ, Marvier M, Huesing J, Dively G, Huang ZY (2008) A meta-analysis of effects of Bt crops on honey bees (Hymenoptera: Apidae). PLoS ONE 3(1): e1415.
[30]  Hilder VA, Powell KS, Gatehouse AMR, Gatehouse JA, Gatehouse LN, et al. (1995) Expression of snowdrop lectin in transgenic tobacco plants results in added protection against aphids. Transgenic Res 4(1): 18–25.
[31]  Hogervorst PAM, Ferry N, Gatehouse AMR, W?ckers FL, Romeis J (2006) Direct effects of snowdrop lectin (GNA) on larvae of three aphid predators and fate of GNA after ingestion. J Insect Physiol 52(6): 614–624.
[32]  Babendreier D, Reichhart B, Romeis J, Bigler F (2008) Impact of transgene products on the behaviour and performance of bumble bee micro colonies. Entomol Exp Appl 126: 148–157.
[33]  Romeis J, Babendreier D, W?ckers FL (2003) Consumption of snowdrop lectin (Galanthus nivalis agglutinin) causes direct effects on adult parasitic wasps. Oecologia 134(4): 528–536.
[34]  Bell HA, Kirkbride-Smith AE, Marris GC, Edwards JP, Gatehouse AMR (2004) Oral toxicity and impact on fecundity of three insecticidal proteins on the gregarious ectoparasitoid Eulophus pennicornis (Hymenoptera: Eulophidae). Agric For Entomol 6(3): 215–222.
[35]  Hogervorst PAM, W?ckers FL, Woodring J, Romeis J (2008) Snowdrop lectin (Galanthus nivalis agglutinin) in aphid honeydew negatively affects survival of a honeydew consuming parasitoid. Agric For Entomol. In press.
[36]  Malone LA, Burgess EPJ, Christeller JT, Gatehouse HS (1998) In vivo responses of honey bee midgut proteases to two protease inhibitors from potato. J Insect Physiol 44(2): 141–147.
[37]  Malone LA, Burgess EPJ, Stefanovic D, Gatehouse HS (2000) Effects of four protease inhibitors on the survival of worker bumblebees, Bombus terrestris L. Apidologie 31(1): 25–38.
[38]  Westcott L, Nelson D (2001) Canola pollination: an update. Bee World 82(3): 115–129.
[39]  Westrich P (1989) Die Wildbienen Baden-Württembergs. Stuttgart: Ulmer.
[40]  Wilkaniec Z, Giejdasz K (2003) Suitability of nesting substrates for the cavity-nesting bee Osmia rufa. J Apic Res 42(3): 29–31.
[41]  Abel CA, Wilson RL, Luhman RL (2003) Pollinating efficacy of Osmia cornifrons and Osmia lignaria subsp lignaria (Hymenoptera: Megachilidae) on three Brassicaceae species grown under field cages. J Entomol Sci 38(4): 545–552.
[42]  Ferry N, Raemaekers RJM, Majerus MEN, Jouanin L, Port G, et al. (2003) Impact of oilseed rape expressing the insecticidal cysteine protease inhibitor oryzacystatin on the beneficial predator Harmonia axyridis (multicoloured Asian ladybeetle). Mol Ecol 12(2): 493–504.
[43]  Van Damme EJM, Allen AK, Peumans WJ (1987) Isolation and characterization of a lectin with exclusive specificity towards mannose from snowdrop (Galanthus nivalis) bulbs. FEBS Lett 215(1): 140–144.
[44]  Bonadé-Bottino M (1993) Défence du colza contre les insectes phytophages déprédateurs: étude d'une stratégie basée sur l'expression d'inhibiteurs de protéases dans la plante. Orsay: University of Paris-Sud.
[45]  Bradford MM (1976) Rapid and sensitive method for quantitation of microgram quantities of protein utilizing principle of protein-dye binding. Anal Biochem 72(1–2): 248–254.
[46]  Gatehouse AMR, Davison GM, Newell CA, Merryweather A, Hamilton WDO, et al. (1997) Transgenic potato plants with enhanced resistance to the tomato moth, Lacanobia oleracea: Growth room trials. Mol Breeding 3(1): 49–63.
[47]  Down RE, Gatehouse AMR, Hamilton WDO, Gatehouse JA (1996) Snowdrop lectin inhibits development and decreases fecundity of the glasshouse potato aphid (Aulacorthum solani) when administered in vitro and via transgenic plants both in laboratory and glasshouse trials. J Insect Physiol 42(11–12): 1035–1045.
[48]  Jouanin L, Bonadé-Bottino M, Girard C, Lerin J, Pham-Delègue MH (2000) Expression of protease inhibitors in rapeseed. In: Michaud D, editor. Recombinant protease inhibitors in plants. Georgetown: Land Bioscience. pp. 179–190.
[49]  Cox DR, Oakes D (1990) Analysis of survival data. London: Chapman & Hall.
[50]  Holm S (1979) A simple sequentially rejective multiple test procedure. Scand J Stat 6(2): 65–70.
[51]  Bosch J, Vicens N (2002) Body size as an estimator of production costs in a solitary bee. Ecol Entomol 27(2): 129–137.
[52]  Bosch J, Kemp WP (2004) Effect of pre-wintering and wintering temperature regimes on weight loss, survival, and emergence time in the mason bee Osmia cornuta (Hymenoptera: Megachilidae). Apidologie 35(5): 469–479.
[53]  Ryan CA (1990) Protease inhibitors in plants: Genes for improving defenses against insects and pathogens. Annu Rev Phytopathol 28: 425–449.
[54]  Girard C, Picard-Nizou AL, Grallien E, Zaccomer B, Jouanin L, et al. (1998) Effects of proteinase inhibitor ingestion on survival, learning abilities and digestive proteinases of the honeybee. Transgenic Res 7(4): 239–246.
[55]  Malone LA, Giacon HA, Burgess EPJ, Maxwell JZ, Christeller JT, et al. (1995) Toxicity of trypsin endopeptidase inhibitors to honey bees (Hymenoptera: Apidae). J Econ Entomol 88(1): 46–50.
[56]  Burgess EPJ, Malone LA, Christeller JT (1996) Effects of two proteinase inhibitors on the digestive enzymes and survival of honey bees (Apis mellifera). J Insect Physiol 42(9): 823–828.
[57]  Moritz B, Crailsheim K (1987) Physiology of protein digestion in the midgut of the honeybee (Apis mellifera L.). J Insect Physiol 33(12): 923–931.
[58]  Belzunces LP, Lenfant C, Dipasquale S, Colin ME (1994) In vivo and in vitro effects of wheat germ agglutinin and Bowman-Birk soybean trypsin inhibitor, two potential transgene products, on midgut esterase and protease activities from Apis mellifera. Comp Bioch Phys B 109(1): 63–69.
[59]  Pham-Delègue MH, Girard C, Le Métayer M, Picard-Nizou AL, Hennequet C, et al. (2000) Long-term effects of soybean protease inhibitors on digestive enzymes, survival and learning abilities of honeybees. Entomol Exp Appl 95(1): 21–29.
[60]  Morandin LA, Winston ML (2003) Effects of novel pesticides on bumble bee (Hymenoptera: Apidae) colony health and foraging ability. Environ Entomol 32(3): 555–563.
[61]  Abe K, Kondo H, Arai S (1987) Purification and characterization of a rice cysteine proteinase inhibitor. Agr Biol Chem Tokyo 51(10): 2763–2768.
[62]  Balzarini J, Hatse S, Vermeire K, Princen K, Aquaro S, et al. (2004) Mannose-specific plant lectins from the Amaryllidaceae family qualify as efficient microbicides for prevention of human immunodeficiency virus infection. Antimicrob Agents Chemother 48(10): 3858–3870.
[63]  Raw A (1974) Pollen preferences of three Osmia species (Hymenoptera). Oikos 25(1): 54–60.
[64]  Sick M, Kühne S, Hommel B (2004) Transgenic rape pollen in larval food of bees - Component of a model study on the probability of horizontal plant-to-bacteria gene transfer. Mitt Dtsch Ges Allg Angew Ent 14(1–6): 423–426.
[65]  Raw A (1972) The biology of the solitary bee Osmia rufa (L.) (Megachilidae). Trans R Ent Soc Lond 124(3): 213–229.
[66]  Gathmann A, Tscharntke T (2002) Foraging ranges of solitary bees. J Anim Ecol 71(5): 757–764.
[67]  Thompson HM, Hunt LV (1999) Extrapolating from honeybees to bumblebees in pesticide risk assessment. Ecotoxicology 8(3): 147–166.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133