Background Statins are widely used as a cholesterol lowering medication, reduce cardiovascular mortality and morbidity in high risk patients; and only rarely cause serious adverse drug reactions (ADRs). UK primary care databases of morbidity and prescription data, which now cover several million people, have potential for more powerful analytical approaches to study ADRs including adjusting for confounders and examining temporal effects. Methods Case-crossover design in detecting statin associated myopathy ADR in 93, 831 patients, using two independent primary care databases (1991–2006). We analysed risk by drug class, by disease code and cumulative year, exploring different cut-off exposure times and confounding by temporality. Results Using a 12 and 26 week exposure period, large risk ratios (RR) are associated with all classes of statins and fibrates for myopathy: RR 10.6 (9.8–11.4) and 19.9 (17.6–22.6) respectively. At 26 weeks, the largest risks are with fluvastatin RR 33.3 (95% CI 16.8–66.0) and ciprofibrate (with previous statin use) RR 40.5 (95% CI 13.4–122.0). AT 12 weeks the differences between cerivastatin and atorvastatin RR for myopathy were found to be significant, RR 2.05 (95% CI 1.2–3.5), and for rosuvastatin and fluvastatin RR 3.0 (95% CI 1.6–5.7). After 12 months of statin initiation, the relative risk for myopathy for all statins and fibrates increased to 25.7 (95% CI 21.8–30.3). Furthermore, this signal was detected within 2 years of first events being recorded. Our data suggests an annual incidence of statin induced myopathy or myalgia of around 11.4 for 16, 591 patients or 689 per million per year. Conclusion There may be differential risks associated with some classes of statin and fibrate. Myopathy related to statin or fibrate use may persist after a long exposure time (12 months or more). These methods could be applied for early detection of harmful drug side effects, using similar primary care diagnostic and prescribing data.
References
[1]
Stricker BH, Psaty BM (2004) Detection, verification, and quantification of adverse drug reactions. BMJ 329: 44–47.
[2]
National Audit Office study team (2007) Prescribing costs in primary care1–39.
[3]
Baigent C, Keech A, Kearney PM, Blackwell L, Buck G, et al. (2005) Efficacy and safety of cholesterol-lowering treatment: prospective meta-analysis of data from 90,056 participants in 14 randomised trials of statins. Lancet 366: 1267–1278.
[4]
Pirmohamed M, James S, Meakin S, Green C, Scott AK, Walley TJ, Farrar K, Park BK, Breckenridge AM (2004) Adverse drug reactions as cause of admission to hospital: prospective analysis of 18 820 patients. BMJ 329: 15–19.
[5]
Armitage J (2007) The safety of statins in clinical practice. Lancet.
[6]
McClure DL, Valuck RJ, Glanz M, Murphy JR, Hokanson JE (2007) Statin and statin-fibrate use was significantly associated with increased myositis risk in a managed care population. J Clin Epidemiol 60: 812–818.
[7]
Gaist D, Rodriguez LA, Huerta C, Hallas J, Sindrup SH (2001) Lipid-lowering drugs and risk of myopathy: a population-based follow-up study. Epidemiology 12: 565–569.
[8]
Majeed A (2004) Sources, uses, strengths and limitations of data collected in primary care in England. Health Stat Q 5-14:
[9]
Maclure M (1991) The case-crossover design: a method for studying transient effects on the risk of acute events. Am J Epidemiol 133: 144–153.
[10]
Farrington P, Pugh S, Colville A, Flower A, Nash J, et al. (1995) A new method for active surveillance of adverse events from diphtheria/tetanus/pertussis and measles/mumps/rubella vaccines. Lancet 345: 567–569.
[11]
Meier CR, Jick SS, Derby LE, Vasilakis C, Jick H (1998) Acute respiratory-tract infections and risk of first-time acute myocardial infarction. Lancet 351: 1467–1471.
[12]
Garcia Rodriguez LA, Perez GS (1998) Use of the UK General Practice Research Database for pharmacoepidemiology. Br J Clin Pharmacol 45: 419–425.
[13]
Garcia Rodriguez LA, Duque A, Castellsague J, Perez-Gutthann S, Stricker BH (1999) A cohort study on the risk of acute liver injury among users of ketoconazole and other antifungal drugs. Br J Clin Pharmacol 48: 847–852.
[14]
Meier CR, Wilcock K, Jick SS (2004) The risk of severe depression, psychosis or panic attacks with prophylactic antimalarials. Drug Saf 27: 203–213.
[15]
van der Linden PD, van der LJ, Vlug AE, Stricker BH (1998) Skin reactions to antibacterial agents in general practice. J Clin Epidemiol 51: 703–708.
[16]
Wood L, Martinez C (2004) The general practice research database: role in pharmacovigilance. Drug Saf 27: 871–881.
[17]
Aberra FN, Brensinger CM, Bilker WB, Lichtenstein GR, Lewis JD (2005) Antibiotic use and the risk of flare of inflammatory bowel disease. Clin Gastroenterol Hepatol 3: 459–465.
[18]
Gislason GH, Jacobsen S, Rasmussen JN, Rasmussen S, Buch P, et al. (2006) Risk of death or reinfarction associated with the use of selective cyclooxygenase-2 inhibitors and nonselective nonsteroidal antiinflammatory drugs after acute myocardial infarction. Circulation 113: 2906–2913.
[19]
Hebert C, Delaney JA, Hemmelgarn B, Levesque LE, Suissa S (2007) Benzodiazepines and elderly drivers: a comparison of pharmacoepidemiological study designs. Pharmacoepidemiol Drug Saf 16: 845–849.
[20]
Altman DG, Bland JM (2003) Interaction revisited: the difference between two estimates. BMJ 326: 219.
[21]
Soininen K, Niemi M, Kilkki E, Strandberg T, Kivisto KT (2006) Muscle symptoms associated with statins: a series of twenty patients. Basic Clin Pharmacol Toxicol 98: 51–54.
[22]
[Anonymous] (2007) InforSense KDE factsheet: http://www.inforsense.com/pdfs/InforSens?e_KDE_Factsheet.pdf.
[23]
Rowe A, Kalaitzopoulos D, Osmond M, Ghanem M, Guo Y (2003) The discovery net system for high throughput bioinformatics. ISMB (Supplement of Bioinformatics) 225-231:
[24]
Department of Health (DoH, 2001) (2001) National Service Framework for Diabetes: Standards.
[25]
National Institute for Health and Clinical Excellence (NICE) (2006) Statins for the prevention of cardiovascular events in patients at increased risk of developing cardiovascular disease or those with established cardiovascular disease.
[26]
Graham DJ, Staffa JA, Shatin D, Andrade SE, Schech SD, et al. (2004) Incidence of hospitalized rhabdomyolysis in patients treated with lipid-lowering drugs. JAMA 292: 2585–2590.
[27]
Black C, Jick H (2002) Etiology and frequency of rhabdomyolysis. Pharmacotherapy 22: 1524–1526.