[1] | Kuffler SW (1953) Discharge patterns and functional organization of the mammalian retina. J Neurophysiology 16: 37–68.
|
[2] | Hubel DH, Wiesel TN (1962) Receptive fields, binocular interaction and functional architecture in the cat's visual cortex. J Physiol London 160: 106–154.
|
[3] | Jung R (1960) Microphysiologie corticaler Neurone: Ein beitrag zur koordination der hirnrinde und des visuellen systems. In: Tower DB, Schadé JP, editors. Structure and function of the cerebral cortex. Hague: Elsevier publishing company. pp. 204–233.
|
[4] | Schiller PH, Sandell JH, Maunsell JHR (1986) Functions of the ON and OFF channels of the visual system. Nature 322: 824–825.
|
[5] | Efron R (1970) The relationship between the duration of a stimulus and the duration of a perception. Neuropsychologia 8: 37–55.
|
[6] | Efron R (1970) The minimum duration of a perception. Neuropsychologia 8: 57–63.
|
[7] | Galifret Y (2006) Visual persistence and cinema? CR Biologies 329: 369–385.
|
[8] | Levick WR, Zacks JL (1970) Responses of cat retinal ganglion cells to brief flashes of light. J Physiology London 206: 677–700.
|
[9] | Kratz KE, May JG (1990) Response persistence of cat retinal ganglion cells to the temporally discrete presentation of sinewave gratings. Int J Neurosci 52: 111–9.
|
[10] | Hirsch JA, Alonso JM, Reid RC, Martinez LM (1998) Synaptic Integration in Striate Cortical Simple Cells. J Neurosci 18(22): 9517–9528.
|
[11] | Singer W, Phillips WA (1974) Function and interaction of on and off transients in vision II. Neurophysiology. Exp Brain Res 19: 507–521.
|
[12] | Duysens J, Orban GA, Cremieux J, Maes H (1985) Visual cortical correlates of visible persistence. Vision Res 25: 171–178.
|
[13] | Duysens J, Schaafsma SJ, Orban GA (1996) Cortical off response tuning for stimulus duration. Vision res 36: 3243–3251.
|
[14] | Hirsch JA, Martinez LM, Alonso J-M, Desai K, Pillai C, et al. (2002) Synaptic physiology of the flow of information in the cat's visual cortex in vivo. J Physiology 540: 335–350.
|
[15] | Heggelund P (1981) Receptive field organization of simple cells in cat striate cortex. Exp Brain Res 42: 89–98.
|
[16] | Heggelund P (1981) Receptive field organization of complex cells in cat striate cortex. Exp Brain Res 42: 99–107.
|
[17] | Lund JS, Henry GH, MacQueen CL, Harvey AR (1979) Anatomical organization of the primary visual cortex (area 17) of the cat. A comparison with area 17 of the macque monkey. J Comp Neurology 184: 599–618.
|
[18] | Ahmed B, Anderson JC, Douglas RJ, Martin KA, Nelson JC (1994) Polyneuronal innervation of spiny stellate neurons in cat visual cortex. J Comp Neurology 341: 39–49.
|
[19] | Maunsell JHR, Van Essen DC (1983) The connections of the middle temporal visual area (MT) and their relationship to a cortical hierarchy in the macaque monkey. J Neurosci 3: 2563–2586.
|
[20] | Loewenstein PR, Somogyi P (1991) Synaptic organization of cortico-cortical connections from the primary visual cortex to the posteromedial lateral suprasylvian visual area in the cat. J Comp Neurology 310: 253–266.
|
[21] | Anderson JC, Martin KAC (2002) Connection from cortical area V2 to MT in macaque monkey. J Comp Neurology 443: 56–70.
|
[22] | Perkel DH, Gerstein G, Moore G (1967) Neuronal spike trains and stochastic point processes. Biophys J 7: 391–418.
|
[23] | Bullier J, Henry GH (1980) Ordinal position and afferent input of neurons in monkey striate cortex. J Comp Neurology 193(4): 913–35.
|
[24] | Maunsell JHR, Gibson JR (1992) Visual response latencies in striate cortex of the macaque monkey. J Neurophysiology 68: 1332–1344.
|
[25] | Davila HV, Salzberg BM, Cohen LB, Waggoner AS (1973) A large change in axon fluorescence that provides a promising method for measuring membrane potential. Nat New Biol 241: 159–160.
|
[26] | Cohen LB, Salzberg BM, Davila HV, Ross WN, Landowne D (1974) Changes in axon fluorescence during activity: molecular probes of membrane potential. J Membr Biol 19: 1–36.
|
[27] | Grinvald A, Hildseheim R (2004) VSDI: A new era in functional imaging of cortical dynamics. Nature Rev Neurosci 5: 873–884.
|
[28] | Ross WN, Salzberg BM, Cohen LB, Grinvald A, Davila HV, et al. (1977) Changes in absorption, fluorescence, dichroism, and Birefringence in stained giant axons: optical measurement of membrane potential. J Membr Biol 33: 141–183.
|
[29] | Petersen CC, Grinvald A, Sakmann B (2003) Spatiotemporal dynamics of sensory responses in layer 2/3 of rat barrel cortex measured in vivo by voltage-sensitive dye imaging combined with whole-cell voltage recordings and neuron reconstructions. J Neurosci 23: 1298–1309.
|
[30] | Ferezou I, Bolea S, Petersen CC (2006) Visualizing the cortical representation of whisker touch: voltage-sensitive dye imaging in freely moving mice. Neuron 50: 617–629.
|
[31] | Berger T, Borgdorff A, Crochet S, Neubauer FB, Lefort S, et al. (2007) Combined voltage and calcium epiflourescence imaging in vitro and in vivo reveals subthreshold and suprathreshold dynamics of mouse barrel cortex. J Neurophysiology 97: 3751–3762.
|
[32] | Kleinfeld D, Delaney KR (1996) Distributed representation of vibrissa movement in the upper layers of somatosensory cortex revealed with voltage-sensitive dyes. J Comp Neurology 375: 89–108.
|
[33] | Lippert MT, Takagaki K, Xu W, Huang X, Wu J-Y (2007) Methods for voltage-sensitive dye imaging of rat cortical activity with high signal-to-noiose ratio. J Neurophysiology 98: 502–512.
|
[34] | Ahmed B, Hanazawa A, Undeman C, Eriksson D, Valentiniene S, et al. (2008) Cortical dynamics encode visual apparent motion (Cerebral Cortex epub ahead of print)
|
[35] | Destexhe A, Rudolph M, Pare D (2003) The high-conductance state of neocortical neurons in vivo. Nat Rev Neurosci 4: 739–751.
|
[36] | Heller J, Hertz JA, Kjaer TW, Richmond BJ (1995) Information flow and temporal coding in primate pattern vision. J Comput Neurosci 2: 175–193.
|
[37] | Roland PE, Hanazawa A, Undeman C, Eriksson D, Tompa T, et al. (2006) Cortical feedback depolarization waves: A mechanism of top-down influence on early visual areas. Proc Natl Acad Sci USA 103: 12586–12591.
|
[38] | Colonnier M (1981) The electron-miscroscopic analysis of the neuronal organization of the cerebral cortex. The organization of the cerebral cortex. In: Schmitt FO, Worden FG, Adelman G, Dennis SG, editors.
|
[39] | Somogyi PS, Tamás G, Lujan R, Buhl EH (1998) Salient features of synaptic organization in the cerebral cortex. Brain Research Reviews 26: 113–135.
|
[40] | Binzegger T, Douglas RJ, Martin KAC (2004) A quantitative map of the circuit of cat primary visual cortex. J Neurosci 24: 8441–8453.
|
[41] | Martinez LM, Alonso JM, Reid RC, Hirsch JA (2002) Laminar processing of stimulus orientation in cat visual cortex. J Physiology 540: 321–333.
|
[42] | Borg-Graham LJ, Monier C, Frégnac Y (1998) Visual input evokes transient and strong shunting inhibition in visual cortical neurons. Nature 393: 369–373.
|
[43] | Destexhe A, Paré D (1999) Impact of network activity on the integrative properties of neocortical pyramidal neurons in vivo. J Neurophysiol 81: 1531–1547.
|
[44] | Monier C, Chavane F, Baudot P, Graham LJ, Frégnac Y (2003) Orientation and direction selectivity of synaptic inputs in visual cortical neurons: A diversity of combinations produces spike tuning. Neuron 37: 663–680.
|
[45] | Rudolph M, Pospischil M, Timofeev I, Destexhe A (2007) Inhibition determines membrane potential dynamics and controls action potential generation in awake and sleeping cat cortex. J Neurosci 27: 5280–5290.
|
[46] | Pernberg J, Jirmann KU, Eysel UT (1998) Structure and dynamics of receptive fields in the visual cortex of the cat (area 18) and the influence of GABAergic inhibition. Eur J Neurosci 10: 3596–3606.
|
[47] | Colheart M (1980) Iconic memory and visible persistence. Perception and Psychophysics 27: 183–228.
|
[48] | Reid RC, Victor JD, Shapley RM (1997) The use of m-sequences in the analysis of visual neurons: linear receptive field properties. Vis Neurosci 14: 1015–1027.
|
[49] | Innocenti GM, Manger PR, Masiello I, Colin I, Tettoni L (2002) Architecture and callosal connections of visual areas 17, 18, 19 and 21 in the ferret (Mustela putorius). Cereb Cortex 12: 411–422.
|
[50] | Shoham S, Fellows MR, Normann RA (2003) Robust, automatic spike sorting using mixtures of multivariate t-distributions. J Neurosci Methods 127: 111–122.
|
[51] | Carandini M, Demb JB, Mante V, Tolhurst DJ, Dan Y, et al. (2005) Do we know what the early visual system does? J Neurosci 25(46): 10577–97.
|
[52] | Salzberg BM, Davila HV, Cohen LB (1973) Optical recording of impulses in individual neurones of an invertebrate central nervous system. Nature 246: 508–509.
|
[53] | Konnerth A, Orkand RK (1986) Voltage-sensitive dyes measure potential changes in axons and glia of the frog optic nerve. Neurosci Lett 66: 49–54.
|
[54] | Lev-Ram V, Grinvald A (1986) Ca2+ and K+ -dependent communication between central nervous system myelinated axons and oligodendrocytes revealed by voltage-sensitive dyes. Proc Natl Acad Sci U S A 83: 6652–6655.
|
[55] | Konnerth A, Orkand PM, Orkand RK (1988) Optical recording of electrical activity from axons and glia of frog optic nerve: Potentiometric dye responses and morphometrics. Glia 1: 225–232.
|
[56] | Bergles DE, Jahr CE (1997) Synaptic activation of glutamate transporters in hippocampal astrocytes. Neuron 19: 1297–1308.
|
[57] | Andersen P, Dingledine R, Gjerstad L, Langmoen IA, Laursen AM (1980) Two different responses of hippocampal pyramidal cells to application of gamma-aminobutyric acid. J Physiology 307: 279–296.
|