全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
PLOS ONE  2008 

Multivalent HA DNA Vaccination Protects against Highly Pathogenic H5N1 Avian Influenza Infection in Chickens and Mice

DOI: 10.1371/journal.pone.0002432

Full-Text   Cite this paper   Add to My Lib

Abstract:

Background Sustained outbreaks of highly pathogenic avian influenza (HPAI) H5N1 in avian species increase the risk of reassortment and adaptation to humans. The ability to contain its spread in chickens would reduce this threat and help maintain the capacity for egg-based vaccine production. While vaccines offer the potential to control avian disease, a major concern of current vaccines is their potency and inability to protect against evolving avian influenza viruses. Methodology / Principal Findings The ability of DNA vaccines encoding hemagglutinin (HA) proteins from different HPAI H5N1 serotypes was evaluated for its ability to elicit neutralizing antibodies and to protect against homologous and heterologous HPAI H5N1 strain challenge in mice and chickens after DNA immunization by needle and syringe or with a pressure injection device. These vaccines elicited antibodies that neutralized multiple strains of HPAI H5N1 when given in combinations containing up to 10 HAs. The response was dose-dependent, and breadth was determined by the choice of the influenza virus HA in the vaccine. Monovalent and trivalent HA vaccines were tested first in mice and conferred protection against lethal H5N1 A/Vietnam/1203/2004 challenge 68 weeks after vaccination. In chickens, protection was observed against heterologous strains of HPAI H5N1 after vaccination with a trivalent H5 serotype DNA vaccine with doses as low as 5 μg DNA given twice either by intramuscular needle injection or with a needle-free device. Conclusions/Significance DNA vaccines offer a generic approach to influenza virus immunization applicable to multiple animal species. In addition, the ability to substitute plasmids encoding different strains enables rapid adaptation of the vaccine to newly evolving field isolates.

References

[1]  Barry MA, Johnston SA (1997) Biological features of genetic immunization. Vaccine 15: 788–791.
[2]  Robinson HL, Torres CA (1997) DNA vaccines. Semin Immunol 9: 271–283.
[3]  Gurunathan S, Klinman DM, Seder RA (2000) DNA vaccines: immunology, application, and optimization. Annu Rev Immunol 18: 927–974.
[4]  Kodihalli S, Kobasa DL, Webster RG (2000) Strategies for inducing protection against avian influenza A virus subtypes with DNA vaccines. Vaccine 18: 2592–2599.
[5]  Yang Z-Y, Kong W-P, Huang Y, Roberts A, Murphy B, et al. (2004) A DNA vaccine induces SARS coronavirus neutralization and protective immunity in mice. Nature 428: 561–564.
[6]  Gares SL, Fischer KP, Congly SE, Lacoste S, Addison WR, et al. (2006) Immunotargeting with CD154 (CD40 ligand) enhances DNA vaccine responses in ducks. Clin Vaccine Immunol 13: 958–965.
[7]  Lee CW, Senne DA, Suarez DL (2006) Development and application of reference antisera against 15 hemagglutinin subtypes of influenza virus by DNA vaccination of chickens. Clin Vaccine Immunol 13: 395–402.
[8]  Roh HJ, Sung HW, Kwon HM (2006) Effects of DDA, CpG-ODN, and plasmid-encoded chicken IFN-gamma on protective immunity by a DNA vaccine against IBDV in chickens. J Vet Sci 7: 361–368.
[9]  Swayne DE (2006) Principles for vaccine protection in chickens and domestic waterfowl against avian influenza: emphasis on Asian H5N1 high pathogenicity avian influenza. Ann N Y Acad Sci 1081: 174–181.
[10]  Kumar M, Chu HJ, Rodenberg J, Krauss S, Webster RG (2007) Association of serologic and protective responses of avian influenza vaccines in chickens. Avian Dis 51: 481–483.
[11]  Luckay A, Sidhu MK, Kjeken R, Megati S, Chong SY, et al. (2007) Effect of plasmid DNA vaccine design and in vivo electroporation on the resulting vaccine-specific immune responses in rhesus macaques. J Virol 81: 5257–5269.
[12]  McCluskie MJ, Brazolot Millan CL, Gramzinski RA, Robinson HL, Santoro JC, et al. (1999) Route and method of delivery of DNA vaccine influence immune responses in mice and non-human primates. Mol Med 5: 287–300.
[13]  Raviprakash K, Porter KR (2006) Needle-free injection of DNA vaccines: a brief overview and methodology. Methods Mol Med 127: 83–89.
[14]  Skinner MA, Buddle BM, Wedlock DN, Keen D, de Lisle GW, et al. (2003) A DNA prime-Mycobacterium bovis BCG boost vaccination strategy for cattle induces protection against bovine tuberculosis. Infect Immun 71: 4901–4907.
[15]  Ruiz LM, Orduz S, Lopez ED, Guzman F, Patarroyo ME, et al. (2007) Immune response in mice and cattle after immunization with a Boophilus microplus DNA vaccine containing bm86 gene. Vet Parasitol 144: 138–145.
[16]  Selke M, Meens J, Springer S, Frank R, Gerlach GF (2007) Immunization of pigs to prevent disease in humans: construction and protective efficacy of a Salmonella enterica serovar Typhimurium live negative-marker vaccine. Infect Immun 75: 2476–2483.
[17]  Kutzler MA, Baker RJ, Mattson DE (2004) Humoral response to West Nile virus vaccination in alpacas and llamas. J Am Vet Med Assoc 225: 414–416.
[18]  Grim KC, McCutchan T, Li J, Sullivan M, Graczyk TK, et al. (2004) Preliminary results of an anticircumsporozoite DNA vaccine trial for protection against avian malaria in captive African black-footed penguins (Spheniscus demersus). J Zoo Wildl Med 35: 154–161.
[19]  Li S, Liu C, Klimov A, Subbarao K, Perdue ML, et al. (1999) Recombinant influenza A virus vaccines for the pathogenic human A/Hong Kong/97 (H5N1) viruses. J Infect Dis 179: 1132–1138.
[20]  Kapczynski DR, Sellers HS (2003) Immunization of turkeys with a DNA vaccine expressing either the F or N gene of avian metapneumovirus. Avian Dis 47: 1376–1383.
[21]  Verminnen K, Loock MV, Cox E, Goddeeris BM, Vanrompay D (2005) Protection of turkeys against Chlamydophila psittaci challenge by DNA and rMOMP vaccination and evaluation of the immunomodulating effect of 1 alpha,25-dihydroxyvitamin D(3). Vaccine 23: 4509–4516.
[22]  Oshop GL, Elankumaran S, Heckert RA (2002) DNA vaccination in the avian. Vet Immunol Immunopathol 89: 1–12.
[23]  Kodihalli S, Haynes JR, Robinson HL, Webster RG (1997) Cross-protection among lethal H5N2 influenza viruses induced by DNA vaccine to the hemagglutinin. J Virol 71: 3391–3396.
[24]  Jiang Y, Yu K, Zhang H, Zhang P, Li C, et al. (2007) Enhanced protective efficacy of H5 subtype avian influenza DNA vaccine with codon optimized HA gene in a pCAGGS plasmid vector. Antiviral Res 75: 234–241.
[25]  Webster RG, Guan Y, Peiris M, Walker D, Krauss S, et al. (2002) Characterization of H5N1 influenza viruses that continue to circulate in geese in southeastern China. J Virol 76: 118–126.
[26]  Capua I, Marangon S (2007) Control and prevention of avian influenza in an evolving scenario. Vaccine 25: 5645–5652.
[27]  Sorrell EM, Ramirez-Nieto GC, Gomez-Osorio IG, Perez DR (2007) Genesis of pandemic influenza. Cytogenet Genome Res 117: 394–402.
[28]  Longini IM Jr, Nizam A, Xu S, Ungchusak K, Hanshaoworakul W, et al. (2005) Containing pandemic influenza at the source. Science 309: 1083–1087.
[29]  Taubenberger JK, Morens DM, Fauci AS (2007) The next influenza pandemic: can it be predicted? JAMA 297: 2025–2027.
[30]  Subbarao K, Luke C (2007) H5N1 viruses and vaccines. PLoS Pathog 3: e40.
[31]  Subbarao K, Joseph T (2007) Scientific barriers to developing vaccines against avian influenza viruses. Nat Rev Immunol 7: 267–278.
[32]  Suarez DL (2005) Overview of avian influenza DIVA test strategies. Biologicals 33: 221–226.
[33]  Smith GJ, Fan XH, Wang J, Li KS, Qin K, et al. (2006) Emergence and predominance of an H5N1 influenza variant in China. Proc Natl Acad Sci U S A 103: 16936–16941.
[34]  Barouch DH, Yang ZY, Kong WP, Korioth-Schmitz B, Sumida SM, et al. (2005) A human T-cell leukemia virus type 1 regulatory element enhances the immunogenicity of human immunodeficiency virus type 1 DNA vaccines in mice and nonhuman primates. J Virol 79: 8828–8834.
[35]  Yang Z-Y, Wei CJ, Kong W-P, Wu L, Xu L, et al. (2007) Immunization by avian H5 influenza hemagglutinin mutants with altered receptor binding specificity. Science 317: 825–828.
[36]  Kong W-P, Hood C, Yang Z-Y, Wei CJ, Xu L, et al. (2006) Protective immunity to lethal challenge of the 1918 pandemic influenza virus by vaccination. Proc Natl Acad Sci USA 103: 15987–15991.
[37]  Lipatov AS, Hoffmann E, Salomon R, Yen HL, Webster RG (2006) Cross-protectiveness and immunogenicity of influenza A/Duck/Singapore/3/97(H5) vaccines against infection with A/Vietnam/1203/04(H5N1) virus in ferrets. J Infect Dis 194: 1040–1043.
[38]  Schwartz JA, Buonocore L, Roberts A, Suguitan A Jr, Kobasa D, et al. (2007) Vesicular stomatitis virus vectors expressing avian influenza H5 HA induce cross-neutralizing antibodies and long-term protection. Virology 366: 166–173.
[39]  Almond GEfficacy of the AGRO-JET MIT-II NEEDLE-LESS JET INJECTOR for Iron Dextran Administration in Piglets. http://www.wltdistributors.com/PDF/IronD?ex.pdf.
[40]  Hulse DJ, Webster RG, Russell RJ, Perez DR (2004) Molecular determinants within the surface proteins involved in the pathogenicity of H5N1 influenza viruses in chickens. J Virol 78: 9954–9964.
[41]  Webby RJ, Webster RG (2003) Are we ready for pandemic influenza? Science 302: 1519–1522.
[42]  Enserink M (2004) Breakthrough of the year. Avian influenza: catastrophe waiting in the wings? Science 306: 2016.
[43]  Higginson R, Davies K (2005) The threat of an avian influenza pandemic. Br J Nurs 14: 632.
[44]  Stohr K (2005) Avian influenza and pandemics–research needs and opportunities. N Engl J Med 352: 405–407.
[45]  Ferguson NM, Fraser C, Donnelly CA, Ghani AC, Anderson RM (2004) Public health. Public health risk from the avian H5N1 influenza epidemic. Science 304: 968–969.
[46]  Neumann G, Kawaoka Y (2006) Host range restriction and pathogenicity in the context of influenza pandemic. Emerg Infect Dis 12: 881–886.
[47]  Ungchusak K, Auewarakul P, Dowell SF, Kitphati R, Auwanit W, et al. (2005) Probable person-to-person transmission of avian influenza A (H5N1). N Engl J Med 352: 333–340.
[48]  Rao SS, Gomez P, Mascola JR, Dang V, Krivulka GR, et al. (2006) Comparative evaluation of three different intramuscular delivery methods for DNA immunization in a nonhuman primate animal model. Vaccine 24: 367–373.
[49]  Fomsgaard A (1999) HIV-1 DNA vaccines. Immunol Lett 65: 127–131.
[50]  Wan H, Perez DR (2007) Amino acid 226 in the hemagglutinin of H9N2 influenza viruses determines cell tropism and replication in human airway epithelial cells. J Virol 81: 5181–5191.
[51]  Bui HH, Peters B, Assarsson E, Mbawuike I, Sette A (2007) Ab and T cell epitopes of influenza A virus, knowledge and opportunities. Proc Natl Acad Sci U S A 104: 246–251.
[52]  Reed LJ, Muench H (1938) A simple method of estimating fifty percent endpoints. Am J Hygiene 27: 493–497.
[53]  Song H, Nieto GR, Perez DR (2007) A new generation of modified live-attenuated avian influenza viruses using a two-strategy combination as potential vaccine candidates. J Virol 81: 9238–9248.
[54]  Hoffmann E, Krauss S, Perez D, Webby R, Webster RG (2002) Eight-plasmid system for rapid generation of influenza virus vaccines. Vaccine 20: 3165–3170.
[55]  Makarova NV, Ozaki H, Kida H, Webster RG, Perez DR (2003) Replication and transmission of influenza viruses in Japanese quail. Virology 310: 8–15.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133