全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
PLOS ONE  2008 

Multispacer Sequence Typing for Mycobacterium tuberculosis Genotyping

DOI: 10.1371/journal.pone.0002433

Full-Text   Cite this paper   Add to My Lib

Abstract:

Background Genotyping methods developed to survey the transmission dynamics of Mycobacterium tuberculosis currently rely on the interpretation of restriction and amplification profiles. Multispacer sequence typing (MST) genotyping is based on the sequencing of several intergenic regions selected after complete genome sequence analysis. It has been applied to various pathogens, but not to M. tuberculosis. Methods and Findings In M. tuberculosis, the MST approach yielded eight variable intergenic spacers which included four previously described variable number tandem repeat loci, one single nucleotide polymorphism locus and three newly evaluated spacers. Spacer sequence stability was evaluated by serial subculture. The eight spacers were sequenced in a collection of 101 M. tuberculosis strains from five phylogeographical lineages, and yielded 29 genetic events including 13 tandem repeat number variations (44.82%), 11 single nucleotide mutations (37.93%) and 5 deletions (17.24%). These 29 genetic events yielded 32 spacer alleles or spacer-types (ST) with an index of discrimination of 0.95. The distribution of M. tuberculosis isolates into ST profiles correlated with their assignment into phylogeographical lineages. Blind comparison of a further 93 M. tuberculosis strains by MST and restriction fragment length polymorphism-IS6110 fingerprinting and mycobacterial interspersed repetitive units typing, yielded an index of discrimination of 0.961 and 0.992, respectively. MST yielded 41 different profiles delineating 16 related groups and proved to be more discriminatory than IS6110-based typing for isolates containing <8 IS6110 copies (P<0.0003). MST was successfully applied to 7/10 clinical specimens exhibiting a Cts ≤ 42 cycles in internal transcribed spacer-real time PCR. Conclusions These results support MST as an alternative, sequencing-based method for genotyping low IS6110 copy-number M. tuberculosis strains. The M. tuberculosis MST database is freely available (http://ifr48.timone.univ-mrs.fr/MST_MTub?erculosis/mst).

References

[1]  Dye C, Garnett GP, Sleeman K, Williams BG (1998) Prospects for worldwide tuberculosis control under the WHO DOTS strategy. Directly observed short-course therapy. Lancet 352: 1886–1891.
[2]  Raviglione MC, Snider DE, Kochi A (1995) Global epidemiology of tuberculosis. Morbidity and mortality of a worldwide epidemic. JAMA 273: 220–226.
[3]  van Soolingen D, Hermans PW, de Haas PE, Soll DR, van Embden JD (1991) Occurrence and stability of insertion sequences in Mycobacterium tuberculosis complex strains: evaluation of an insertion sequence-dependent DNA polymorphism as a tool in the epidemiology of tuberculosis. J Clin Microbiol 29: 2578–2586.
[4]  Sreevatsan S, Pan X, Stockbauer KE, Connell ND, Kreiswirth BN, et al. (1997) Restricted structural gene polymorphism in the Mycobacterium tuberculosis complex indicates evolutionarily recent global dissemination. Proc Natl Acad Sci U S A 94: 9869–9874.
[5]  Mathema B, Kurepina NE, Bifani PJ, Kreiswirth BN (2006) Molecular epidemiology of tuberculosis: current insights. Clin Microbiol Rev 19: 658–685.
[6]  Malik AN, Godfrey-Faussett P (2005) Effects of genetic variability of Mycobacterium tuberculosis strains on the presentation of disease. Lancet Infect Dis 5: 174–183.
[7]  Ferdinand S, Valetudie G, Sola C, Rastogi N (2004) Data mining of Mycobacterium tuberculosis complex genotyping results using mycobacterial interspersed repetitive units validates the clonal structure of spoligotyping-defined families. Res Microbiol 155: 647–654.
[8]  Sebban M, Mokrousov I, Rastogi N, Sola C (2002) A data-mining approach to spacer oligonucleotide typing of Mycobacterium tuberculosis. Bioinformatics 18: 235–243.
[9]  Filliol I, Driscoll JR, van Soolingen D, Kreiswirth BN, Kremer K, et al. (2003) Snapshot of moving and expanding clones of Mycobacterium tuberculosis and their global distribution assessed by spoligotyping in an international study. J Clin Microbiol 41: 1963–1970.
[10]  Bifani PJ, Plikaytis BB, Kapur V, Stockbauer K, Pan X, et al. (1996) Origin and interstate spread of a New York City multidrug-resistant Mycobacterium tuberculosis clone family. JAMA 275: 452–457.
[11]  van Soolingen D, de Haas PE, Hermans PW, Groenen PM, van Embden JD (1993) Comparison of various repetitive DNA elements as genetic markers for strain differentiation and epidemiology of Mycobacterium tuberculosis. J Clin Microbiol 31: 1987–1995.
[12]  Baker L, Brown T, Maiden MC, Drobniewski F (2004) Silent nucleotide polymorphisms and a phylogeny for Mycobacterium tuberculosis. Emerg Infect Dis 10: 1568–1577.
[13]  Gagneux S, DeRiemer K, Van T, Kato-Maeda M, de Jong BC, et al. (2006) Variable host-pathogen compatibility in Mycobacterium tuberculosis. Proc Natl Acad Sci U S A 103: 2869–2873.
[14]  Varnerot A, Clement F, Gheorghiu M, Vincent-Levy-Frebault V (1992) Pulsed field gel electrophoresis of representatives of Mycobacterium tuberculosis and Mycobacterium bovis BCG strains. FEMS Microbiol Lett 77: 155–160.
[15]  Zhang Y, Mazurek GH, Cave MD, Eisenach KD, Pang Y, et al. (1992) DNA polymorphisms in strains of Mycobacterium tuberculosis analyzed by pulsed-field gel electrophoresis: a tool for epidemiology. J Clin Microbiol 30: 1551–1556.
[16]  van Embden JD, Cave MD, Crawford JT, Dale JW, Eisenach KD, et al. (1993) Strain identification of Mycobacterium tuberculosis by DNA fingerprinting: recommendations for a standardized methodology. J Clin Microbiol 31: 406–409.
[17]  Frothingham R, Meeker-O'Connell WA (1998) Genetic diversity in the Mycobacterium tuberculosis complex based on variable numbers of tandem DNA repeats. Microbiology 144: 1189–1196.
[18]  Mazars E, Lesjean S, Banuls AL, Gilbert M, Vincent V, et al. (2001) High-resolution minisatellite-based typing as a portable approach to global analysis of Mycobacterium tuberculosis molecular epidemiology. Proc Natl Acad Sci U S A 98: 1901–1906.
[19]  Kamerbeek J, Schouls L, Kolk A, van Agterveld M, van Soolingen D, et al. (1997) Simultaneous detection and strain differentiation of Mycobacterium tuberculosis for diagnosis and epidemiology. J Clin Microbiol 35: 907–914.
[20]  Goguet de la Salmoniere YO, Kim CC, Tsolaki AG, Pym AS, Siegrist MS, et al. (2004) High-throughput method for detecting genomic-deletion polymorphisms. J Clin Microbiol 42: 2913–2918.
[21]  Gutacker MM, Mathema B, Soini H, Shashkina E, Kreiswirth BN, et al. (2006) Single-nucleotide polymorphism-based population genetic analysis of Mycobacterium tuberculosis strains from 4 geographic sites. J Infect Dis 193: 121–128.
[22]  Drancourt M, Roux V, Dang LV, Tran-Hung L, Castex D, et al. (2004) Genotyping, Orientalis-like Yersinia pestis, and plague pandemics. Emerg Infect Dis 10: 1585–1592.
[23]  Foucault C, La Scola B, Lindroos H, Andersson SG, Raoult D (2005) Multispacer typing technique for sequence-based typing of Bartonella quintana. J Clin Microbiol 43: 41–48.
[24]  Fournier PE, Zhu Y, Ogata H, Raoult D (2004) Use of highly variable intergenic spacer sequences for multispacer typing of Rickettsia conorii strains. J Clin Microbiol 42: 5757–5766.
[25]  Zhu Y, Fournier PE, Ogata H, Raoult D (2005) Multispacer typing of Rickettsia prowazekii enabling epidemiological studies of epidemic typhus. J Clin Microbiol 43: 4708–4712.
[26]  Glazunova O, Roux V, Freylikman O, Sekeyova Z, Fournous G, et al. (2005) Coxiella burnetii genotyping. Emerg Infect Dis 11: 1211–1217.
[27]  Li W, Chomel BB, Maruyama S, Guptil L, Sander A, et al. (2006) Multispacer typing to study the genotypic distribution of Bartonella henselae populations. J Clin Microbiol 44: 2499–2506.
[28]  Djelouadji Z, Raoult D, Daffé M, Drancourt M (2008) A single-step sequencing method for the identification of Mycobacterium tuberculosis complex species. Plos NTD. In press.
[29]  Cole ST, Brosch R, Parkhill J, Garnier T, Churcher C, et al. (1998) Deciphering the biology of Mycobacterium tuberculosis from the complete genome sequence. Nature 393: 537–544.
[30]  Fleischmann RD, Alland D, Eisen JA, Carpenter L, White O, et al. (2002) Whole-genome comparison of Mycobacterium tuberculosis clinical and laboratory strains. J Bacteriol 184: 5479–5490.
[31]  Brander E, Jantzen E, Huttunen R, Julkunen A, Katila ML (1992) Characterization of a distinct group of slowly growing mycobacteria by biochemical tests and lipid analyses. J Clin Microbiol 30: 1972–1975.
[32]  Djelouagji Z, Drancourt M (2006) Inactivation of cultured Mycobacterium tuberculosis organisms prior to DNA extraction. J Clin Microbiol 44: 1594–1595.
[33]  Evans JT, Hawkey PM, Smith EG, Boese KA, Warren RE, et al. (2004) Automated high-throughput mycobacterial interspersed repetitive unit typing of Mycobacterium tuberculosis strains by a combination of PCR and nondenaturing high-performance liquid chromatography. J Clin Microbiol 42: 4175–4180.
[34]  Supply P, Mazars E, Lesjean S, Vincent V, Gicquel B, et al. (2000) Variable human minisatellite-like regions in the Mycobacterium tuberculosis genome. Mol Microbiol 36: 762–771.
[35]  Bruijnesteijn Van Coppenraet ES, Lindeboom JA, Prins JM, Peeters MF, Claas EC, et al. (2004) Real-time PCR assay using fine-needle aspirates and tissue biopsy specimens for rapid diagnosis of mycobacterial lymphadenitis in children. J Clin Microbiol 42: 2644–2650.
[36]  Hunter PR, Gaston MA (1988) Numerical index of the discriminatory ability of typing systems: an application of Simpson's index of diversity. J Clin Microbiol 26: 2465–2466.
[37]  Supply P, Magdalena J, Himpens S, Locht C (1997) Identification of novel intergenic repetitive units in a mycobacterial two-component system operon. Mol Microbiol 26: 991–1003.
[38]  Le Flèche P, Fabre M, Denoeud F, Koeck JL, Vergnaud G (2002) High resolution, on-line identification of strains from the Mycobacterium tuberculosis complex based on tandem repeat typing. BMC Microbiol 2: 37.
[39]  Gutacker MM, Smoot JC, Migliaccio CA, Ricklefs SM, Hua S, et al. (2002) Genome-wide analysis of synonymous single nucleotide polymorphisms in Mycobacterium tuberculosis complex organisms: resolution of genetic relationships among closely related microbial strains. Genetics 162: 1533–1543.
[40]  Benson G, Dong L (1999) Reconstructing the duplication history of a tandem repeat. Proc Int Conf Intell Syst Mol Biol 44–53.
[41]  Barlow RE, Gascoyne-Binzi DM, Gillespie SH, Dickens A, Qamer S, et al. (2001) Comparison of variable number tandem repeat and IS6110-restriction fragment length polymorphism analyses for discrimination of high- and low-copy-number IS6110 Mycobacterium tuberculosis isolates. J Clin Microbiol 39: 2453–2457.
[42]  Goyal M, Saunders NA, van Embden JD, Young DB, Shaw RJ (1997) Differentiation of Mycobacterium tuberculosis isolates by spoligotyping and IS6110 restriction fragment length polymorphism. J Clin Microbiol 35: 647–651.
[43]  Cowan LS, Mosher L, Diem L, Massey JP, Crawford JT (2002) Variable-number tandem repeat typing of Mycobacterium tuberculosis isolates with low copy numbers of IS6110 by using mycobacterial interspersed repetitive units. J Clin Microbiol 40: 1592–1602.
[44]  Radhakrishnan I, MY K, Kumar RA, Mundayoor S (2001) Implications of low frequency of IS6110 in fingerprinting field isolates of Mycobacterium tuberculosis from Kerala, India. J Clin Microbiol 39: 1683.
[45]  Bauer J, Andersen AB, Kremer K, Miorner H (1999) Usefulness of spoligotyping To discriminate IS6110 low-copy-number Mycobacterium tuberculosis complex strains cultured in Denmark. J Clin Microbiol 37: 2602–2606.
[46]  Burman WJ, Reves RR, Hawkes AP, Rietmeijer CA, Yang Z, et al. (1997) DNA fingerprinting with two probes decreases clustering of Mycobacterium tuberculosis. Am J Respir Crit Care Med 155: 1140–1146.
[47]  Kanduma E, McHugh TD, Gillespie SH (2003) Molecular methods for Mycobacterium tuberculosis strain typing: a users guide. J Appl Microbiol 94: 781–791.
[48]  Mathema B, Kurepina NE, Bifani PJ, Kreiswirth BN (2006) Molecular epidemiology of tuberculosis: current insights. Clin Microbiol Rev 19: 658–685.
[49]  Braden CR, Crawford JT, Schable BA (2002) Quality assessment of Mycobacterium tuberculosis genotyping in a large laboratory network. Emerg Infect Dis 8: 1210–1215.
[50]  Arnold C, Thorne N, Underwood A, Baster K, Gharbia S (2006) Evolution of short sequence repeats in Mycobacterium tuberculosis. FEMS Microbiol Lett 256: 340–346.
[51]  Bifani PJ, Mathema B, Kurepina NE, Kreiswirth BN (2002) Global dissemination of the Mycobacterium tuberculosis W-Beijing family strains. Trends Microbiol 10: 45–52.
[52]  Glynn JR, Whiteley J, Bifani PJ, Kremer K, van Soolingen D (2002) Worldwide occurrence of Beijing/W strains of Mycobacterium tuberculosis: a systematic review. Emerg Infect Dis 8: 843–849.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133