Background In order to improve malaria control, and under the aegis of WHO recommendations, many efforts are being devoted to developing new tools for identifying geographic areas with high risk of parasite transmission. Evaluation of the human antibody response to arthropod salivary proteins could be an epidemiological indicator of exposure to vector bites, and therefore to risk of pathogen transmission. In the case of malaria, which is transmitted only by anopheline mosquitoes, maximal specificity could be achieved through identification of immunogenic proteins specific to the Anopheles genus. The objective of the present study was to determine whether the IgG response to the Anopheles gambiae gSG6 protein, from its recombinant form to derived synthetic peptides, could be an immunological marker of exposure specific to Anopheles gambiae bites. Methodology/Principal Findings Specific IgG antibodies to recombinant gSG6 protein were observed in children living in a Senegalese area exposed to malaria. With the objective of optimizing Anopheles specificity and reproducibility, we designed five gSG6-based peptide sequences using a bioinformatic approach, taking into consideration i) their potential antigenic properties and ii) the absence of cross-reactivity with protein sequences of other arthropods/organisms. The specific anti-peptide IgG antibody response was evaluated in exposed children. The five gSG6 peptides showed differing antigenic properties, with gSG6-P1 and gSG6-P2 exhibiting the highest antigenicity. However, a significant increase in the specific IgG response during the rainy season and a positive association between the IgG level and the level of exposure to Anopheles gambiae bites was significant only for gSG6-P1. Conclusions/Significance This step-by-step approach suggests that gSG6-P1 could be an optimal candidate marker for evaluating exposure to Anopheles gambiae bites. This marker could be employed as a geographic indicator, like remote sensing techniques, for mapping the risk of malaria. It could also represent a direct criterion of efficacy in evaluation of vector control strategies.
References
[1]
WHO, Department RBM, UNICEF (2005) World Malaria Report. WHO/HTM/MAL/2005.1102. Geneva: World Health Organization.
[2]
Smith T, Killeen G, Lengeler C, Tanner M (2004) Relationships between the outcome of Plasmodium falciparum infection and the intensity of transmission in Africa. Am J Trop Med Hyg 71: 80–86.
[3]
Ribeiro JM (1995) Blood-feeding arthropods: live syringes or invertebrate pharmacologists? Infect Agents Dis 4: 143–152.
[4]
Billingsley PF, Baird J, Mitchell JA, Drakeley C (2006) Immune interactions between mosquitoes and their hosts. Parasite Immunol 28: 143–153.
[5]
Remoue F, Cornelie S, NGom A, Boulanger D, Simondon F (2005) Immune responses to arthropod bites during vector-borne diseases. In: Garraud O, editor. Update in tropical immunology. Fort P.O. Trivandrum, Herala, India: Transworld research Network. pp. 377–400.
[6]
Lane RS, Moss RB, Hsu YP, Wei T, Mesirow ML, et al. (1999) Anti-arthropod saliva antibodies among residents of a community at high risk for Lyme disease in California. Am J Trop Med Hyg 61: 850–859.
[7]
Barral A, Honda E, Caldas A, Costa J, Vinhas V, et al. (2000) Human immune response to sand fly salivary gland antigens: a useful epidemiological marker? Am J Trop Med Hyg 62: 740–745.
[8]
Nascimento RJ, Santana JM, Lozzi SP, Araujo CN, Teixeira AR (2001) Human IgG1 and IgG4: the main antibodies against Triatoma infestans (Hemiptera: Reduviidae) salivary gland proteins. Am J Trop Med Hyg 65: 219–226.
[9]
Poinsignon A, Remoue F, Rossignol M, Cornelie S, Courtin D, et al. (2008) Human IgG antibody response to Glossina saliva: an epidemiological marker of exposure to Glossina bites. Am J Trop Med Hyg 78: 750–753.
[10]
Remoue F, Alix E, Cornelie S, Sokhna C, Cisse B, et al. (2007) IgE and IgG4 antibody responses to Aedes saliva in African children. Acta Trop 104: 108–115.
[11]
Remoue F, Cisse B, Ba F, Sokhna C, Herve J-P, et al. (2006) Evaluation of the antibody response to Anopheles salivary antigens as a potential marker of risk of malaria. Trans R Soc Trop Med Hyg 100: 363–370.
[12]
Waitayakul A, Somsri S, Sattabongkot J, Looareesuwan S, Cui L, et al. (2006) Natural human humoral response to salivary gland proteins of Anopheles mosquitoes in Thailand. Acta Trop 98: 66–73.
[13]
Ribeiro JM, Francischetti IM (2003) Role of arthropod saliva in blood feeding: sialome and post-sialome perspectives. Annu Rev Entomol 48: 73–88.
[14]
Lombardo F, Lanfrancotti A, Mestres-Simon M, Rizzo C, Coluzzi M, et al. (2006) At the interface between parasite and host: the salivary glands of the African malaria vector Anopheles gambiae. Parassitologia 48: 573–580.
[15]
Titus RG, Bishop JV, Mejia JS (2006) The immunomodulatory factors of arthropod saliva and the potential for these factors to serve as vaccine targets to prevent pathogen transmission. Parasite Immunol 28: 131–141.
[16]
Champagne DE (2005) Antihemostatic molecules from saliva of blood-feeding arthropods. Pathophysiol Haemost Thromb 34: 221–227.
[17]
Valenzuela JG (2002) High-throughput approaches to study salivary proteins and genes from vectors of disease. Insect Biochem Mol Biol 32: 1199–1209.
[18]
Arca B, Lombardo F, Valenzuela JG, Francischetti IM, Marinotti O, et al. (2005) An updated catalogue of salivary gland transcripts in the adult female mosquito, Anopheles gambiae. J Exp Biol 208: 3971–3986.
[19]
Calvo E, Andersen J, Francischetti IM, de L Capurro M, de Bianchi AG, et al. (2004) The transcriptome of adult female Anopheles darlingi salivary glands. Insect Mol Biol 13: 73–88.
[20]
Orlandi-Pradines E, Almeras L, Denis de Senneville L, Barbe S, Remoue F, et al. (2007) Antibody response against saliva antigens of Anopheles gambiae and Aedes aegypti in travellers in tropical Africa. Microbes Infect 9: 1454–1462.
[21]
Robert V, Dieng H, Lochouran L, Traore SF, Trape JF, et al. (1998) Malaria transmission in the rural zone of Niakhar, Senegal. Trop Med Int Health 3: 667–677.
[22]
Cisse B, Sokhna C, Boulanger D, Milet J, Ba el H, et al. (2006) Seasonal intermittent preventive treatment with artesunate and sulfadoxine-pyrimethamine for prevention of malaria in Senegalese children: a randomised, placebo-controlled, double-blind trial. Lancet 367: 659–667.
[23]
Lanfrancotti A, Lombardo F, Santolamazza F, Veneri M, Castrignano T, et al. (2002) Novel cDNAs encoding salivary proteins from the malaria vector Anopheles gambiae. FEBS Lett 517: 67–71.
[24]
Saha S, Raghava GPS (2004) BcePred: Prediction of Continuous B-Cell Epitopes in Antigenic Sequences Using Physico-chemical Properties. In: Berlin S, editor. Artificial Immune Systems. Heidelberg. pp. 197–204.
[25]
Schonbach C, Koh JL, Flower DR, Wong L, Brusic V (2002) FIMM, a database of functional molecular immunology: update 2002. Nucleic Acids Res 30: 226–229.
[26]
Singh H, Raghava GP (2001) ProPred: prediction of HLA-DR binding sites. Bioinformatics 17: 1236–1237.
[27]
Lawson D, Arensburger P, Atkinson P, Besansky NJ, Bruggner RV, et al. (2007) VectorBase: a home for invertebrate vectors of human pathogens. Nucleic Acids Res 35: D503–505.
[28]
Altschul SF, Madden TL, Schaffer AA, Zhang J, Zhang Z, et al. (1997) Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. Nucleic Acids Res 25: 3389–3402.
[29]
Ribeiro JMC (2003) A catalogue of Anopheles gambiae transcripts significantly more or less expressed following a blood meal. Insect Biochem Mol Biol 33: 865–882.
[30]
Poinsignon A, Cornelie S, Remoue F, Grebaut P, Courtin D, et al. (2007) Human/Vector relationships during Human African Trypanosomiasis: Initial screening of immunogenic salivary proteins of Glossina species. Am J Trop Med Hyg 76: 327–333.
[31]
Cornelie S, Remoue F, Doucoure S, Ndiaye T, Sauvage FX, et al. (2007) An insight into immunogenic salivary proteins of Anopheles gambiae in African children. Malar J 6: 75.
[32]
Arca B, Lombardo F, de Lara Capurro M, della Torre A, Dimopoulos G, et al. (1999) Trapping cDNAs encoding secreted proteins from the salivary glands of the malaria vector Anopheles gambiae. Proc Natl Acad Sci U S A 96: 1516–1521.
[33]
Valenzuela JG, Francischetti IM, Pham VM, Garfield MK, Ribeiro JM (2003) Exploring the salivary gland transcriptome and proteome of the Anopheles stephensi mosquito. Insect Biochem Mol Biol 33: 717–732.
[34]
Calvo E, Dao A, Pham VM, Ribeiro JMC (2007) An insight into the sialome of Anopheles funestus reveals an emerging pattern in anopheline salivary protein families. Insect Biochem Mol Biol 37: 164–175.
[35]
Holt RA, Subramanian GM, Halpern A, Sutton GG, Charlab R, et al. (2002) The genome sequence of the malaria mosquito Anopheles gambiae. Science 298: 129–149.
[36]
Kalluri S, Gilruth P, Rogers D, Szczur M (2007) Surveillance of arthropod vector-borne infectious diseases using remote sensing techniques: a review. PLoS Pathog 3: 1361–1371.