Immunoglobulin (Ig) A represents the predominant antibody isotype produced at the intestinal mucosa, where it plays an important role in limiting the penetration of commensal intestinal bacteria and opportunistic pathogens. We show in mice that Peyer's Patch-derived dendritic cells (PP-DC) exhibit a specialized phenotype allowing the promotion of IgA production by B2 cells. This phenotype included increased expression of the retinaldehyde dehydrogenase 1 (RALDH1), inducible nitric oxide synthase (iNOS), B cell activating factor of the tumor necrosis family (BAFF), a proliferation-inducing ligand (APRIL), and receptors for the neuropeptide vasoactive intestinal peptide (VIP). The ability of PP-DC to promote anti-CD40 dependent IgA was partially dependent on retinoic acid (RA) and transforming growth factor (TGF)-β, whilst BAFF and APRIL signaling were not required. Signals delivered by BAFF and APRIL were crucial for CD40 independent IgA production, although the contribution of B2 cells to this pathway was minimal. The unique ability of PP-DC to instruct na?ve B cells to differentiate into IgA producing plasma cells was mainly imparted by the presence of intestinal commensal bacteria, and could be mimicked by the addition of LPS to the culture. These data indicate that exposure to pathogen-associated molecular patterns present on intestinal commensal bacteria condition DC to express a unique molecular footprint that in turn allows them to promote IgA production.
References
[1]
Conley ME, Delacroix DL (1987) Intravascular and mucosal immunoglobulin A: two separate but related systems of immune defense? Ann Intern Med 106: 892–899.
[2]
Mestecky J, Russell MW, Jackson S, Brown TA (1986) The human IgA system: a reassessment. Clin Immunol Immunopathol 40: 105–114.
[3]
Harris NL, Spoerri I, Schopfer JF, Nembrini C, Merky P, et al. (2006) Mechanisms of neonatal mucosal antibody protection. J Immunol.
[4]
Macpherson AJ, Uhr T (2004) Induction of protective IgA by intestinal dendritic cells carrying commensal bacteria. Science 303: 1662–1665.
[5]
Husband AJ, Gowans JL (1978) The origin and antigen-dependent distribution of IgA-containing cells in the intestine. J Exp Med 148: 1146–1160.
[6]
Brandtzaeg P, Prydz H (1984) Direct evidence for an integrated function of J chain and secretory component in epithelial transport of immunoglobulins. Nature 311: 71–73.
[7]
Johansen FE, Braathen R, Brandtzaeg P (2001) The J chain is essential for polymeric Ig receptor-mediated epithelial transport of IgA. J Immunol 167: 5185–5192.
[8]
Brandtzaeg P, Krajci P, Lamm ME, Kaetzel CS (1994) Epithelial and hepatobiliary transport of polymeric immunoglobulins. In: Ogra PL, editor. Handbook of mucosal immunology. San Diego: Academic Press. pp. 113–126.
[9]
Gardby E, Lane P, Lycke NY (1998) Requirements for B7-CD28 costimulation in mucosal IgA responses: paradoxes observed in CTLA4-H gamma 1 transgenic mice. J Immunol 161: 49–59.
[10]
H?rnquist CE, Ekman L, Grdic KD, Sch?n K, Lycke NY (1995) Paradoxical IgA immunity in CD4-deficient mice. J Immunol 155: 2877–2887.
[11]
Coffman RL, Lebman DA, Shrader B (1989) Transforming growth factor ? specifically enhances IgA production by lipopolysaccharide stimulated murine B lymphocytes. J Exp Med 170: 1039–1044.
[12]
Litinskiy MB, Nardelli B, Hilbert DM, He B, Schaffer A, et al. (2002) DCs induce CD40-independent immunoglobulin class switching through BLyS and APRIL. Nat Immunol 3: 822–829.
[13]
Pasare C, Medzhitov R (2005) Control of B-cell responses by Toll-like receptors. Nature 438: 364–368.
[14]
Heer AK, Shamshiev A, Donda A, Uematsu S, Akira S, et al. (2007) TLR signaling fine-tunes anti-influenza B cell responses without regulating effector T cell responses. J Immunol 178: 2182–2191.
[15]
Macpherson AJ, Gatto D, Sainsbury E, Harriman GR, Hengartner H, et al. (2000) A primitive T cell-independent mechanism of intestinal mucosal IgA responses to commensal bacteria. Science 288: 2222–2226.
[16]
Snider DP, Liang H, Switzer I, Underdown BJ (1999) IgA production in MHC class II-deficient mice is primarily a function of B-1a cells. Int Immunol 11: 191–198.
[17]
Sangster MY, Riberdy JM, Gonzalez M, Topham DJ, Baumgarth N, et al. (2003) An Early CD4+ T Cell-dependent Immunoglobulin A Response to Influenza Infection in the Absence of Key Cognate T-B Interactions. J Exp Med 198: 1011–1021.
[18]
Macpherson AJ, Geuking MB, McCoy KD (2005) Immune responses that adapt the intestinal mucosa to commensal intestinal bacteria. Immunology 115: 153–162.
[19]
Holzmann B, McIntyre BW, Weissman IL (1989) Identification of a murine Peyer's patch-specific lymphocyte homing receptor as an integrin molecule with an alpha chain homologous to human VLA-4 alpha. Cell 56: 37–46.
[20]
Holzmann B, Weissman IL (1989) Peyer's patch-specific lymphocyte homing receptors consist of a VLA-4-like alpha chain associated with either of two integrin beta chains, one of which is novel. Embo J 8: 1735–1741.
[21]
Hu MC, Crowe DT, Weissman IL, Holzmann B (1992) Cloning and expression of mouse integrin beta p(beta 7): a functional role in Peyer's patch-specific lymphocyte homing. Proc Natl Acad Sci U S A 89: 8254–8258.
[22]
Iwata M, Hirakiyama A, Eshima Y, Kagechika H, Kato C, et al. (2004) Retinoic acid imprints gut-homing specificity on T cells. Immunity 21: 527–538.
[23]
Johansson-Lindbom B, Svensson M, Wurbel MA, Malissen B, Marquez G, et al. (2003) Selective generation of gut tropic T cells in gut-associated lymphoid tissue (GALT): requirement for GALT dendritic cells and adjuvant. J Exp Med 198: 963–969.
[24]
Mora JR, Bono MR, Manjunath N, Weninger W, Cavanagh LL, et al. (2003) Selective imprinting of gut-homing T cells by Peyer's patch dendritic cells. Nature 424: 88–93.
[25]
Mora JR, Iwata M, Eksteen B, Song SY, Junt T, et al. (2006) Generation of gut-homing IgA-secreting B cells by intestinal dendritic cells. Science 314: 1157–1160.
Huang NN, Han SB, Hwang IY, Kehrl JH (2005) B cells productively engage soluble antigen-pulsed dendritic cells: visualization of live-cell dynamics of B cell-dendritic cell interactions. J Immunol 175: 7125–7134.
[28]
Kushnir N, Liu L, MacPherson GG (1998) Dendritic cells and resting B cells form clusters in vitro and in vivo: T cell independence, partial LFA-1 dependence, and regulation by cross-linking surface molecules. J Immunol 160: 1774–1781.
[29]
He B, Qiao X, Klasse PJ, Chiu A, Chadburn A, et al. (2006) HIV-1 envelope triggers polyclonal Ig class switch recombination through a CD40-independent mechanism involving BAFF and C-type lectin receptors. J Immunol 176: 3931–3941.
[30]
Wykes M, Pombo A, Jenkins C, MacPherson GG (1998) Dendritic cells interact directly with naive B lymphocytes to transfer antigen and initiate class switching in a primary T-dependent response. J Immunol 161: 1313–1319.
[31]
Shulga-Morskaya S, Dobles M, Walsh ME, Ng LG, MacKay F, et al. (2004) B cell-activating factor belonging to the TNF family acts through separate receptors to support B cell survival and T cell-independent antibody formation. J Immunol 173: 2331–2341.
[32]
Boirivant M, Fais S, Annibale B, Agostini D, Delle Fave G, et al. (1994) Vasoactive intestinal polypeptide modulates the in vitro immunoglobulin A production by intestinal lamina propria lymphocytes. Gastroenterology 106: 576–582.
[33]
Kimata H, Fujimoto M (1995) Induction of IgA1 and IgA2 production in immature human fetal B cells and pre-B cells by vasoactive intestinal peptide. Blood 85: 2098–2104.
[34]
Tezuka H, Abe Y, Iwata M, Takeuchi H, Ishikawa H, et al. (2007) Regulation of IgA production by naturally occurring TNF/iNOS-producing dendritic cells. Nature 448: 929–933.
[35]
Coombes JL, Siddiqui KR, Arancibia-Carcamo CV, Hall J, Sun CM, et al. (2007) A functionally specialized population of mucosal CD103+ DCs induces Foxp3+ regulatory T cells via a TGF-beta and retinoic acid-dependent mechanism. J Exp Med 204: 1757–1764.
[36]
Saurer L, McCullough KC, Summerfield A (2007) In vitro induction of mucosa-type dendritic cells by all-trans retinoic acid. J Immunol 179: 3504–3514.
[37]
Castigli E, Wilson SA, Scott S, Dedeoglu F, Xu S, et al. (2005) TACI and BAFF-R mediate isotype switching in B cells. J Exp Med 201: 35–39.
[38]
Macpherson AJ, Harris NL (2004) Interactions between commensal intestinal bacteria and the immune system. Nat Rev Immunol 4: 478–485.
[39]
Cebra JJ, George A, Schrader CE (1991) A microculture containing TH2 and dendritic cells supports the production of IgA by clones from both primary and IgA memory B cells and by single germinal center B cells from Peyer's patches. Immunol Res 10: 389–392.
[40]
Schrader CE, Cebra JJ (1993) Dendritic cell dependent expression of IgA by clones in T/B microcultures. Adv Exp Med Biol 329: 59–64.
[41]
Schrader CE, George A, Kerlin RL, Cebra JJ (1990) Dendritic cells support production of IgA and other non-IgM isotypes in clonal microculture. Int Immunol 2: 563–570.
[42]
Spalding DM, Williamson SI, Koopman WJ, McGhee JR (1984) Preferential induction of polyclonal IgA secretion by murine Peyer's patch dendritic cell-T cell mixtures. J Exp Med 160: 941–946.
Sato A, Hashiguchi M, Toda E, Iwasaki A, Hachimura S, et al. (2003) CD11b+ Peyer's patch dendritic cells secrete IL-6 and induce IgA secretion from naive B cells. J Immunol 171: 3684–3690.
[45]
Franco M, Greenberg HB (1997) Immunity to rotavirus in T cell deficient mice. Virology 238: 169–179.
[46]
Bergqvist P, Gardby E, Stensson A, Bemark M, Lycke NY (2006) Gut IgA class switch recombination in the absence of CD40 does not occur in the lamina propria and is independent of germinal centers. J Immunol 177: 7772–7783.
[47]
Crabbe PA, Bazin H, Eyssen H, Heremans JF (1968) The normal microbial flora as a major stimulus for proliferation of plasma cells synthesizing IgA in the gut. The germ-free intestinal tract. Int Arch Allergy Appl Immunol 34: 362–375.
[48]
Cebra JJ, Bos NA, Cebra ER, Kramer DR, Kroese FG, et al. (1995) Cellular and molecular biologic approaches for analyzing the in vivo development and maintenance of gut mucosal IgA responses. Adv Exp Med Biol 371A: 429–434.
[49]
Talham GL, Jiang HQ, Bos NA, Cebra JJ (1999) Segmented filamentous bacteria are potent stimuli of a physiologically normal state of the murine gut mucosal immune system. Infect Immun 67: 1992–2000.
[50]
Bogdan C (2001) Nitric oxide and the immune response. Nat Immunol 2: 907–916.
[51]
Eckmann L, Kagnoff MF, Fierer J (1993) Epithelial cells secrete the chemokine interleukin-8 in response to bacterial entry. Infect Immun 61: 4569–4574.
[52]
Fierer J, Eckmann L, Kagnoff M (1993) IL-8 secreted by epithelial cells invaded by bacteria. Infect Agents Dis 2: 255–258.
[53]
Jung HC, Eckmann L, Yang SK, Panja A, Fierer J, et al. (1995) A distinct array of proinflammatory cytokines is expressed in human colon epithelial cells in response to bacterial invasion. J Clin Invest 95: 55–65.
[54]
Rimoldi M, Chieppa M, Larghi P, Vulcano M, Allavena P, et al. (2005) Monocyte-derived dendritic cells activated by bacteria or by bacteria-stimulated epithelial cells are functionally different. Blood 106: 2818–2826.
[55]
Rimoldi M, Chieppa M, Salucci V, Avogadri F, Sonzogni A, et al. (2005) Intestinal immune homeostasis is regulated by the crosstalk between epithelial cells and dendritic cells. Nat Immunol 6: 507–514.
[56]
Chorny A, Gonzalez-Rey E, Delgado M (2006) Regulation of dendritic cell differentiation by vasoactive intestinal peptide: therapeutic applications on autoimmunity and transplantation. Ann N Y Acad Sci 1088: 187–194.
[57]
Delgado M, Gonzalez-Rey E, Ganea D (2005) The neuropeptide vasoactive intestinal peptide generates tolerogenic dendritic cells. J Immunol 175: 7311–7324.