全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
PLOS ONE  2008 

Diversity and Evolution of Coral Fluorescent Proteins

DOI: 10.1371/journal.pone.0002680

Full-Text   Cite this paper   Add to My Lib

Abstract:

GFP-like fluorescent proteins (FPs) are the key color determinants in reef-building corals (class Anthozoa, order Scleractinia) and are of considerable interest as potential genetically encoded fluorescent labels. Here we report 40 additional members of the GFP family from corals. There are three major paralogous lineages of coral FPs. One of them is retained in all sampled coral families and is responsible for the non-fluorescent purple-blue color, while each of the other two evolved a full complement of typical coral fluorescent colors (cyan, green, and red) and underwent sorting between coral groups. Among the newly cloned proteins are a “chromo-red” color type from Echinopora forskaliana (family Faviidae) and pink chromoprotein from Stylophora pistillata (Pocilloporidae), both evolving independently from the rest of coral chromoproteins. There are several cyan FPs that possess a novel kind of excitation spectrum indicating a neutral chromophore ground state, for which the residue E167 is responsible (numeration according to GFP from A. victoria). The chromoprotein from Acropora millepora is an unusual blue instead of purple, which is due to two mutations: S64C and S183T. We applied a novel probabilistic sampling approach to recreate the common ancestor of all coral FPs as well as the more derived common ancestor of three main fluorescent colors of the Faviina suborder. Both proteins were green such as found elsewhere outside class Anthozoa. Interestingly, a substantial fraction of the all-coral ancestral protein had a chromohore apparently locked in a non-fluorescent neutral state, which may reflect the transitional stage that enabled rapid color diversification early in the history of coral FPs. Our results highlight the extent of convergent or parallel evolution of the color diversity in corals, provide the foundation for experimental studies of evolutionary processes that led to color diversification, and enable a comparative analysis of structural determinants of different colors.

References

[1]  Lukyanov KA, Chudakov DA, Fradkov AF, Labas YA, Matz MV, et al. (2006) Discovery and properties of GFP-like proteins from nonbioluminescent Anthozoa. Methods Biochem Anal 47: 121–138.
[2]  Chudakov DM, Lukyanov S, Lukyanov KA (2005) Fluorescent proteins as a toolkit for in vivo imaging. Trends in Biotechnology 23: 605–613.
[3]  Shaner NC, Steinbach PA, Tsien RY (2005) A guide to choosing fluorescent proteins. Nature Methods 2: 905–909.
[4]  Wachter RM (2006) The family of GFP-like proteins: Structure, function, photophysics and biosensor applications. Photochem Photobiol 82: 339–344.
[5]  Shagin DA, Barsova EV, Yanushevich YG, Fradkov AF, Lukyanov KA, et al. (2004) GFP-like proteins as ubiquitous metazoan superfamily: Evolution of functional features and structural complexity. Mol Biol Evol 21: 841–850.
[6]  Ugalde JA, Chang BSW, Matz MV (2004) Evolution of coral pigments recreated. Science 305: 1433.
[7]  Dove SG, Hoegh-Guldberg O, Ranganathan S (2001) Major colour patterns of reef-building corals are due to a family of GFP-like proteins. Coral Reefs 19: 197–204.
[8]  Matz MV, Marshall NJ, Vorobyev M (2006) Are corals colorful? Photochem Photobiol 82: 345–350.
[9]  Kelmanson IV, Matz MV (2003) Molecular basis and evolutionary origins of color diversity in great star coral Montastraea cavernosa (Scleractinia : Faviida). Mol Biol Evol 20: 1125–1133.
[10]  Oswald F, Schmitt F, Leutenegger A, Ivanchenko S, D'Angelo C, et al. (2007) Contributions of host and symbiont pigments to the coloration of reef corals. FEBS Journal 274: 1102–1109.
[11]  Lesser MP, Mazel CH, Gorbunov MY, Falkowski PG (2004) Discovery of symbiotic nitrogen-fixing cyanobacteria in corals. Science 305: 997–1000.
[12]  Field SF, Bulina MY, Kelmanson IV, Bielawski JP, Matz MV (2006) Adaptive evolution of multicolored fluorescent proteins in reef-building corals. J Mol Evol 62: 332–339.
[13]  Labas YA, Gurskaya NG, Yanushevich YG, Fradkov AF, Lukyanov KA, et al. (2002) Diversity and evolution of the green fluorescent protein family. Proc Natl Acad Sci USA 99: 4256–4261.
[14]  Henderson JN, Remington SJ (2005) Crystal structures and mutational analysis of amFP486, a cyan fluorescent protein from Anemonia majano. Proc Natl Acad Sci USA 102: 12712–12717.
[15]  Gross LA, Baird GS, Hoffman RC, Baldridge KK, Tsien RY (2000) The structure of the chromophore within DsRed, a red fluorescent protein from coral. Proc Natl Acad Sci USA 97: 11990–11995.
[16]  Mizuno H, Mal TK, Tong KI, Ando R, Furuta T, et al. (2003) Photo-induced peptide cleavage in the green-to-red conversion of a fluorescent protein. Molecular Cell 12: 1051–1058.
[17]  Mazel CH (1995) Spectral measurements of fluorescence emission in Caribbean cnidarians. Mar Ecol Prog Ser 120: 185–191.
[18]  Leutenegger A, D'Angelo C, Matz MV, Denzel A, Oswald F, et al. (2007) It's cheap to be colorful-Anthozoans show a slow turnover of GFP-like proteins. FEBS Journal 274: 2496–2505.
[19]  Lukyanov KA, Fradkov AF, Gurskaya NG, Matz MV, Labas YA, et al. (2000) Natural animal coloration can be determined by a nonfluorescent green fluorescent protein homolog. J Biol Chem 275: 25879–25882.
[20]  Prescott M, Ling M, Beddoe T, Oakley AJ, Dove S, et al. (2003) The 2.2 A crystal structure of a pocilloporin pigment reveals a nonplanar chromophore conformation. Structure 11: 275–284.
[21]  Quillin ML, Anstrom DM, Shu X, O'Leary S, Kallio K, et al. (2005) Kindling fluorescent protein from Anemonia sulcata: dark-state structure at 1.38 A resolution. Biochemistry 44: 5774–5787.
[22]  Remington SJ, Wachter RM, Yarbrough DK, Branchaud B, Anderson DC, et al. (2005) zFP538, a yellow-fluorescent protein from Zoanthus, contains a novel three-ring chromophore. Biochemistry 44: 202–212.
[23]  Matz MV, Fradkov AF, Labas YA, Savitsky AP, Zaraisky AG, et al. (1999) Fluorescent proteins from nonbioluminescent Anthozoa species. Nat Biotechnol 17: 969–973.
[24]  Shu X, Shaner NC, Yarbrough CA, Tsien RY, Remington SJ (2006) Novel chromophores and buried charges control color in mFruits. Biochemistry 45: 9639–9647.
[25]  Shagin DA, Barsova EV, Yanushevich YG, Fradkov AF, Lukyanov KA, et al. (2004) GFP-like proteins as ubiquitous Metazoan superfamily: evolution of functional features and structural complexity. Mol Biol Evol 21: 841–850.
[26]  Baird GS, Zacharias DA, Tsien RY (2000) Biochemistry, mutagenesis, and oligomerization of DsRed, a red fluorescent protein from coral. Proc Natl Acad Sci USA 97: 11984–11989.
[27]  Sun Y, Castner EW, Lawson CL, Falkowski PG (2004) Biophysical characterization of natural and mutant fluorescent proteins cloned from zooxanthellate corals. FEBS Lett 570: 175–183.
[28]  Chudakov DM, Belousov VV, Zaraisky AG, Novoselov VV, Staroverov DB, et al. (2003) Kindling fluorescent proteins for precise in vivo photolabeling. Nat Biotechnol 21: 452–452.
[29]  Wiedenmann J, Elke C, Spindler KD, Funke W (2000) Cracks in the beta-can: Fluorescent proteins from Anemonia sulcata (Anthozoa, Actinaria). Proc Natl Acad Sci USA 97: 14091–14096.
[30]  Gurskaya NG, Fradkov AF, Terskikh A, Matz MV, Labas YA, et al. (2001) GFP-like chromoproteins as a source of far-red fluorescent proteins. FEBS Lett 507: 16–20.
[31]  Romano SL, Palumbi SR (1996) Evolution of scleractinian corals inferred from molecular systematics. Science 271: 640–642.
[32]  Kerr AM (2005) Molecular and morphological supertree of stony corals (Anthozoa : Scleractinia) using matrix representation parsimony. Biological Reviews 80: 543–558.
[33]  Karan M, Brugliera F, Mason J, Jones EL, Dove SG, Hoegh-Guldberg IO, Prescott M (2002) Cell visual characteristic-modifying sequences. Patent: Nufarm Australia Limited (AU); The University of Queensland (AU).
[34]  Williams PD, Pollock DD, Blackburne BP, Goldstein RA (2006) Assessing the accuracy of ancestral protein reconstruction methods. PLoS Computational Biology 2: 598–605.
[35]  Wilson EB (1927) Probable Inference, the Law of Succession, and Statistical Inference. Journal of the American Statistical Association 22: 209–212.
[36]  Cody CW, Prasher DC, Westler WM, Prendergast FG, Ward WW (1993) Chemical structure of the hexapeptide chromophore of the Aequorea green- fluorescent protein. Biochemistry 32: 1212–1218.
[37]  Brejc K, Sixma TK, Kitts PA, Kain SR, Tsien RY, et al. (1997) Structural basis for dual excitation and photoisomerization of the Aequorea victoria green fluorescent protein. Proc Natl Acad Sci USA 94: 2306–2311.
[38]  Stanley GD (2003) The evolution of modern corals and their early history. Earth-Science Reviews 60: 195–225.
[39]  Medina M, Collins AG, Takaoka TL, Kuehl JV, Boore JL (2006) Naked corals: Skeleton loss in Scleractinia. Proc Natl Acad Sci USA 103: 9096–9100.
[40]  Romano SL, Palumbi SR (1997) Molecular evolution of a portion of the mitochondrial 16S ribosomal gene region in scleractinian corals. J Mol Evol 45: 397–411.
[41]  Wang L, Jackson WC, Steinbach PA, Tsien RY (2004) Evolution of new nonantibody proteins via iterative somatic hypermutation. Proc Natl Acad Sci USA 101: 16745–16749.
[42]  Shkrob MA, Yanushevich YG, Chudakov DM, Gurskaya NG, Labas YA, et al. (2005) Far-red fluorescent proteins evolved from a blue chromoprotein from Actinia equina. Biochemical Journal 392: 649–654.
[43]  Chan MCY, Karasawa S, Mizuno H, Bosanac I, Ho D, et al. (2006) Structural characterization of a blue chromoprotein and its yellow mutant from the sea anemone Cnidopus japonicus. J Biol Chem 281: 37813–37819.
[44]  Gurskaya NG, Savitsky AP, Yanushevich YG, Lukyanov SA, Lukyanov KA (2001) Color transitions in coral's fluorescent proteins by site-directed mutagenesis. BMC Biochem 2: 6.
[45]  Patterson GH, Lippincott-Schwartz J (2002) A photoactivatable GFP for selective photolabeling of proteins and cells. Science 297: 1873–1877.
[46]  Kawaguti S (1944) On the physiology of reef corals. VI. Study of the pigments. Palao Trop Biol Stn Stud 2: 617–674.
[47]  Kawaguti S (1966) Electron microscopy on the fluorescent green of reef corals with a note on mucous cells. Biol J Okayama University 2: 11–21.
[48]  Salih A, Larkum A, Cox G, Kuhl M (2000) Fluorescent pigments in corals are photoprotective. Nature 408: 850–853.
[49]  Bou-Abdallah F, Chasteen ND, Lesser MP (2006) Quenching of superoxide radicals by green fluorescent protein. Biochimica Et Biophysica Acta-General Subjects 1760: 1690–1695.
[50]  Agmon N (2005) Proton pathways in green fluorescence protein. Biophysical Journal 88: 2452–2461.
[51]  Agmon N (2007) Kinetics of switchable proton escape from a proton-wire within green fluorescence protein. J Phys Chem B 111: 7870–7878.
[52]  Miller DJ, Ball EE (2000) The coral Acropora: what it can contribute to our knowledge of metazoan evolution and the evolution of developmental processes. Bioessays 22: 291–296.
[53]  Foret S, Kassahn KS, Grasso LC, Hayward DC, Iguchi A, et al. (2007) Genomic and microarray approaches to coral reef conservation biology. Coral Reefs 26: 475–486.
[54]  Zhu YY, Machleder EM, Chenchik A, Li R, Siebert PD (2001) Reverse transcriptase template switching: A SMART (TM) approach for full-length cDNA library construction. Biotechniques 30: 892–897.
[55]  Matz M, Shagin D, Bogdanova E, Britanova O, Lukyanov S, et al. (1999) Amplification of cDNA ends based on template-switching effect and step- out PCR. Nucleic Acids Res 27: 1558–1560.
[56]  Matz MV, Alieva NO, Chenchik A, Lukyanov SA (2003) Amplification of cDNA ends using PCR-suppression effect and step-out PCR. In: Ying S-H, editor. Generation of cDNA libraries: Methods and protocols. Totowa, NJ: Humana Press Inc.
[57]  Altschul SF, Madden TL, Schaffer AA, Zhang JH, Zhang Z, et al. (1997) Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. Nucleic Acids Res 25: 3389–3402.
[58]  Kelmanson I, Matz M (2003) Molecular basis and evolutionary origins of color diversity in great star coral Montastraea cavernosa (Scleractinia: Faviida). Mol Biol Evol 20: 1125–1133.
[59]  Tavare L (1986) Some probabilistic and statistical problems of the analysis of DNA sequences. Lect Math Life Sci 17: 57–86.
[60]  Posada D, Crandall KA (1998) MODELTEST: testing the model of DNA substitution. Bioinformatics 14: 817–818.
[61]  Huelsenbeck JP, Ronquist F (2001) MRBAYES: Bayesian inference of phylogenetic trees. Bioinformatics 17: 754–755.
[62]  Jones DT, Taylor WR, Thornton JM (1992) The Rapid Generation of Mutation Data Matrices from Protein Sequences. Computer Applications in the Biosciences 8: 275–282.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133