Renal transplant recipients are at increased risk of developing invasive pneumococcal diseases but may have poor response to the 23-valent pneumococcal polysaccharide vaccine (PPV). It may be possible to enhance immunogenicity by priming with 7-valent pneumococcal conjugate vaccine (7vPnC) and boosting with PPV 1 year later. In a randomized single-blind, controlled study, adult recipients of renal transplants received either 7nPVC or PPV followed by PPV 1 year later. The vaccine response was defined as 2-fold increase in antibody concentration from baseline and an absolute post-vaccination values ≥1 μg/ml. The primary endpoint was vaccine response of the primed group (7vPnC/PPV) compared with single PPV vaccination. Antibody concentrations for 10 serotypes were measured at baseline, 8 weeks after first vaccination, before second vaccination, and 8 weeks after second vaccination. Of 320 screened patients, 80 patients were randomized and 62 completed the study. Revaccination with PPV achieved no significant increase of immune response in the 7vPnC/PPV group compared with the single PPV recipients A response to at least 1 serotype was seen in 77.1% of patients who received 7vPnC and 93.1% of patients who received PPV (P = 0.046). After second vaccination response to at least 1 serotype was seen in 87.5% patients of 7vPnC/PPV group and 87.1% patients of PPV group (non significant p). The median number of serotypes eliciting a response was 3.5 (95% CI 2.5–4.5) in the 7vPnC/PPV group versus 5 (95% CI 3.9–6.1) in the PPV group (non-significant p). Immunogenicity of pneumococcal vaccination was not enhanced by the prime–boost strategy compared with vaccination with PPV alone. Administration of a single dose of PPV should continue to be the standard of care for adult recipients of renal transplants. Trial Registration EudraCT 2007-004590-25.
References
[1]
Linnemann CC, First MR (1979) Risk of pneumococcal infections in renal transplant patients. JAMA 241: 2619–2621.
[2]
Fedson DS (1999) Pneumococcal vaccination for older adults: the first 20 years. Drugs Aging 15 Suppl 121–30.
[3]
Hjuler T, Wohlfahrt J, Staum Kaltoft M, Koch A, Biggar RJ, et al. (2008) Risks of invasive pneumococcal disease in children with underlying chronic diseases. Pediatrics 122: e26–32.
[4]
Danzinger-Isakov L, Kumar D (2009) Guidelines for vaccination of solid organ transplant candidates and recipients. Am J Transplant 9 Suppl 4S258–262.
[5]
Blumberg EA, Brozena SC, Stutman P, Wood D, Phan HM, et al. (2001) Immunogenicity of pneumococcal vaccine in heart transplant recipients. Clin Infect Dis 32: 307–310.
[6]
Sarmiento E, Rodriguez-Hernandez C, Rodriguez-Molina J, Fernandez-Yanez J, Palomo J, et al. (2006) Impaired anti-pneumococcal polysaccharide antibody production and invasive pneumococcal infection following heart transplantation. Int Immunopharmacol 6: 2027–2030.
[7]
de Roux A, Schmole-Thoma B, Siber GR, Hackell JG, Kuhnke A, et al. (2008) Comparison of pneumococcal conjugate polysaccharide and free polysaccharide vaccines in elderly adults: conjugate vaccine elicits improved antibacterial immune responses and immunological memory. Clin Infect Dis 46: 1015–1023.
[8]
Kumar D, Rotstein C, Miyata G, Arlen D, Humar A (2003) Randomized, double-blind, controlled trial of pneumococcal vaccination in renal transplant recipients. J Infect Dis 187: 1639–1645.
[9]
Kumar D, Chen MH, Wong G, Cobos I, Welsh B, et al. (2008) A randomized, double-blind, placebo-controlled trial to evaluate the prime-boost strategy for pneumococcal vaccination in adult liver transplant recipients. Clin Infect Dis 47: 885–892.
[10]
Stoehr GA, Rose MA, Eber SW, Heidemann K, Schubert R, et al. (2006) Immunogenicity of sequential pneumococcal vaccination in subjects splenectomised for hereditary spherocytosis. Br J Haematol 132: 788–790.
[11]
Lesprit P, Pedrono G, Molina JM, Goujard C, Girard PM, et al. (2007) Immunological efficacy of a prime-boost pneumococcal vaccination in HIV-infected adults. AIDS 21: 2425–2434.
[12]
Molrine DC, Hibberd PL (2001) Vaccines for transplant recipients. Infect Dis Clin North Am 15: 273–305, xii.
[13]
Gattringer R, Winkler H, Roedler S, Jaksch P, Herkner H, et al.. (2011) Immunogenicity of a combined schedule of 7-valent pneumococcal conjugate vaccine followed by a 23-valent polysaccharide vaccine in adult recipients of heart or lung transplants. Transpl Infect Dis.
[14]
Siber GR, Chang I, Baker S, Fernsten P, O’Brien KL, et al. (2007) Estimating the protective concentration of anti-pneumococcal capsular polysaccharide antibodies. Vaccine 25: 3816–3826.
[15]
Goldblatt D, Southern J, Andrews N, Ashton L, Burbidge P, et al. (2009) The immunogenicity of 7-valent pneumococcal conjugate vaccine versus 23-valent polysaccharide vaccine in adults aged 50–80 years. Clin Infect Dis 49: 1318–1325.
[16]
Metersky ML, Dransfield MT, Jackson LA (2010) Determining the optimal pneumococcal vaccination strategy for adults: is there a role for the pneumococcal conjugate vaccine? Chest 138: 486–490.
[17]
Edwards KM, Griffin MR (2003) Great expectations for a new vaccine. N Engl J Med 349: 1312–1314.
[18]
Jackson LA, Neuzil KM, Nahm MH, Whitney CG, Yu O, et al. (2007) Immunogenicity of varying dosages of 7-valent pneumococcal polysaccharide-protein conjugate vaccine in seniors previously vaccinated with 23-valent pneumococcal polysaccharide vaccine. Vaccine 25: 4029–4037.
[19]
Dransfield MT, Nahm MH, Han MK, Harnden S, Criner GJ, et al. (2009) Superior immune response to protein-conjugate versus free pneumococcal polysaccharide vaccine in chronic obstructive pulmonary disease. Am J Respir Crit Care Med 180: 499–505.
[20]
O’Brien KL, Moisi J, Moulton LH, Madore D, Eick A, et al. (2007) Predictors of pneumococcal conjugate vaccine immunogenicity among infants and toddlers in an American Indian PnCRM7 efficacy trial. J Infect Dis 196: 104–114.
[21]
Kilpi T, Ahman H, Jokinen J, Lankinen KS, Palmu A, et al. (2003) Protective efficacy of a second pneumococcal conjugate vaccine against pneumococcal acute otitis media in infants and children: randomized, controlled trial of a 7-valent pneumococcal polysaccharide-meningococcal outer membrane protein complex conjugate vaccine in 1666 children. Clin Infect Dis 37: 1155–1164.
[22]
Ahman H, Kayhty H, Tamminen P, Vuorela A, Malinoski F, et al. (1996) Pentavalent pneumococcal oligosaccharide conjugate vaccine PncCRM is well-tolerated and able to induce an antibody response in infants. Pediatr Infect Dis J 15: 134–139.
[23]
Zangwill KM, Greenberg DP, Chiu CY, Mendelman P, Wong VK, et al. (2003) Safety and immunogenicity of a heptavalent pneumococcal conjugate vaccine in infants. Vaccine 21: 1894–1900.
[24]
Blum MD, Dagan R, Mendelman PM, Pinsk V, Giordani M, et al. (2000) A comparison of multiple regimens of pneumococcal polysaccharide-meningococcal outer membrane protein complex conjugate vaccine and pneumococcal polysaccharide vaccine in toddlers. Vaccine 18: 2359–2367.
[25]
Baxendale HE, Davis Z, White HN, Spellerberg MB, Stevenson FK, et al. (2000) Immunogenetic analysis of the immune response to pneumococcal polysaccharide. Eur J Immunol 30: 1214–1223.
[26]
Goldblatt D, Hussain M, Andrews N, Ashton L, Virta C, et al. (2005) Antibody responses to nasopharyngeal carriage of Streptococcus pneumoniae in adults: a longitudinal household study. J Infect Dis 192: 387–393.
[27]
Chan CY, Molrine DC, George S, Tarbell NJ, Mauch P, et al. (1996) Pneumococcal conjugate vaccine primes for antibody responses to polysaccharide pneumococcal vaccine after treatment of Hodgkin’s disease. J Infect Dis 173: 256–258.
[28]
Miernyk KM, Parkinson AJ, Rudolph KM, Petersen KM, Bulkow LR, et al. (2000) Immunogenicity of a heptavalent pneumococcal conjugate vaccine in Apache and Navajo Indian, Alaska native, and non-native American children aged <2 years. Clin Infect Dis 31: 34–41.
[29]
Kumar D, Humar A, Plevneshi A, Green K, Prasad GV, et al. (2007) Invasive pneumococcal disease in solid organ transplant recipients–10-year prospective population surveillance. Am J Transplant 7: 1209–1214.
[30]
Musher DM, Manof SB, Liss C, McFetridge RD, Marchese RD, et al. (2010) Safety and antibody response, including antibody persistence for 5 years, after primary vaccination or revaccination with pneumococcal polysaccharide vaccine in middle-aged and older adults. J Infect Dis 201: 516–524.
[31]
Jackson LA, Benson P, Sneller VP, Butler JC, Thompson RS, et al. (1999) Safety of revaccination with pneumococcal polysaccharide vaccine. JAMA 281: 243–248.
[32]
Artz AS, Ershler WB, Longo DL (2003) Pneumococcal vaccination and revaccination of older adults. Clin Microbiol Rev 16: 308–318.
[33]
Manoff SB, Liss C, Caulfield MJ, Marchese RD, Silber J, et al. (2010) Revaccination with a 23-valent pneumococcal polysaccharide vaccine induces elevated and persistent functional antibody responses in adults aged 65> or = years. J Infect Dis 201: 525–533.
[34]
Landgren O, Bjorkholm M, Konradsen HB, Soderqvist M, Nilsson B, et al. (2004) A prospective study on antibody response to repeated vaccinations with pneumococcal capsular polysaccharide in splenectomized individuals with special reference to Hodgkin’s lymphoma. J Intern Med 255: 664–673.
[35]
McCashland TM, Preheim LC, Gentry MJ (2000) Pneumococcal vaccine response in cirrhosis and liver transplantation. J Infect Dis 181: 757–760.
[36]
Kumar D, Welsh B, Siegal D, Chen MH, Humar A (2007) Immunogenicity of pneumococcal vaccine in renal transplant recipients–three year follow-up of a randomized trial. Am J Transplant 7: 633–638.
[37]
Linnemann CC Jr, First MR, Schiffman G (1981) Response to pneumococcal vaccine in renal transplant and hemodialysis patients. Arch Intern Med 141: 1637–1640.
[38]
Linnemann CC Jr, First MR, Schiffman G (1986) Revaccination of renal transplant and hemodialysis recipients with pneumococcal vaccine. Arch Intern Med 146: 1554–1556.
[39]
Romero-Steiner S, Musher DM, Cetron MS, Pais LB, Groover JE, et al. (1999) Reduction in functional antibody activity against Streptococcus pneumoniae in vaccinated elderly individuals highly correlates with decreased IgG antibody avidity. Clin Infect Dis 29: 281–288.
[40]
Johnson SE, Rubin L, Romero-Steiner S, Dykes JK, Pais LB, et al. (1999) Correlation of opsonophagocytosis and passive protection assays using human anticapsular antibodies in an infant mouse model of bacteremia for Streptococcus pneumoniae. J Infect Dis 180: 133–140.
[41]
Romero-Steiner S, Libutti D, Pais LB, Dykes J, Anderson P, et al. (1997) Standardization of an opsonophagocytic assay for the measurement of functional antibody activity against Streptococcus pneumoniae using differentiated HL-60 cells. Clin Diagn Lab Immunol 4: 415–422.