BTBR T+tf/J (BTBR) mice have recently been reported to have behaviors that resemble those of autistic individuals, in that this strain has impairments in social interactions and a restricted repetitive and stereotyped pattern of behaviors. Since immune responses, including autoimmune responses, are known to affect behavior, and individuals with autism have aberrant immune activities, we evaluated the immune system of BTBR mice, and compared their immunity and degree of neuroinflammation with that of C57BL/6 (B6) mice, a highly social control strain, and with F1 offspring. Mice were assessed at postnatal day (pnd) 21 and after behavioral analysis at pnd70. BTBR mice had significantly higher amounts of serum IgG and IgE, of IgG anti-brain antibodies (Abs), and of IgG and IgE deposited in the brain, elevated expression of cytokines, especially IL-33 IL-18, and IL-1β in the brain, and an increased proportion of MHC class II-expressing microglia compared to B6 mice. The F1 mice had intermediate levels of Abs and cytokines as well as social activity. The high Ab levels of BTBR mice are in agreement with their increased numbers of CD40hi/I-Ahi B cells and IgG-secreting B cells. Upon immunization with KLH, the BTBR mice produced 2–3 times more anti-KLH Abs than B6 mice. In contrast to humoral immunity, BTBR mice are significantly more susceptible to listeriosis than B6 or BALB/c mice. The Th2-like immune profile of the BTBR mice and their constitutive neuroinflammation suggests that an autoimmune profile is implicated in their aberrant behaviors, as has been suggested for some humans with autism.
References
[1]
Goines P, Van de Water J (2010) The immune system's role in the biology of autism. Curr Opin Neurol 23: 111–117.
[2]
Cohly HH, Panja A (2005) Immunological findings in autism. Int Rev Neurobiol 71: 317–341.
[3]
Pardo CA, Vargas DL, Zimmerman AW (2005) Immunity, neuroglia and neuroinflammation in autism. Int Rev Psychiatry 17: 485–495.
[4]
Vojdani A, Mumper E, Granpeesheh D, Mielke L, Traver D, et al. (2008) Low natural killer cell cytotoxic activity in autism: the role of glutathione, IL-2 and IL-15. J Neuroimmunol 205: 148–54.
[5]
Castellani ML, Conti CM, Kempuraj DJ, Salini V, Vecchiet J, et al. (2009) Autism and immunity: revisited study. Int J Immunopathol Pharmacol 22: 15–19.
[6]
Heuer L, Ashwood P, Schauer J, Goines P, Krakowiak P, et al. (2008) Reduced levels of immunoglobulin in children with autism correlates with behavioral symptoms. Autism Res 1: 275–283.
Stern L, Francoeur MJ, Primeau MN, Sommerville W, Fombonne E, et al. (2005) Immune function in autistic children. Ann Allergy Asthma Immunol 95: 558–565.
[9]
Theoharides TC (2009) Autism spectrum disorders and mastocytosis. Int J Immunopathol Pharmacol 22: 859–865.
[10]
Singh VK (1996) Plasma increase of interleukin-12 and interferon-gamma. Pathological significance in autism. J Neuroimmunol 66: 143–145.
[11]
Croonenberghs J, Bosmans E, Deboutte D, Kenis G, Maes M (2002) Activation of the inflammatory response system in autism. Neuropsychobiology 45: 1–6.
[12]
Vargus DL, Nascimbene C, Krishnan C, Zimmerman AW, Pardo CA (2005) Neuroglial activation and neuroinflammation in the brain of patients with autism. Ann Neurol 57: 67–81.
[13]
Molloy CA, Morrow AL, Meinzen-Derr J, Schleifer K, Dienger K, et al. (2006) Elevated cytokine levels in children with autism spectrum disorder. J Neuroimmunol 172: 198–205.
[14]
Li X, Chauhan A, Sheikh AM, Patil S, Chauhan V, et al. (2009) Elevated immune response in the brain of autistic patients. J Neuroimmunol 207: 111–116.
[15]
Moy SS, Nadler JJ, Young NB, Perez A, Holloway LP, et al. (2007) Mouse behavioral tasks relevant to autism: phenotypes of 10 inbred strains. Behav Brain Res 176: 4–20.
[16]
Bolivar VJ, Walters SR, Phoenix JL (2007) Assessing autism-like behavior in mice: variations in social interactions among inbred strains. Behav Brain Res 176: 21–26.
[17]
McFarlane HG, Kusek GK, Yang M, Phoenix JL, Bolivar VJ, et al. (2008) Autism-like behavioral phenotypes in BTBR T+tf/J mice. Genes Brain Behav 7: 152–163.
[18]
Wohr M, Roullet FI, Crawley JN (2010) Reduced scent marking and ultrasonic vocalizations in the BTBR T+tf/J mouse model of autism. Genes Brain Behav. Mar 22.
[19]
Wahlsten D, Metten P, Crabbe JC (2003) Survey of 21 inbred mouse strains in two laboratories reveals that BTBR T+tf/tf has severely reduced hippocampal commisure and absent corpus callosum. Brain Res 971: 47–54.
[20]
Barnea-Goraly N, Kwon H, Menon V, Eliez S, Lotspeich L, et al. (2004) White matter structure in autism: preliminary evidence from diffusion tensor imaging. Biol Psychiatry 55: 323–326.
[21]
Alexander AL, Lee JE, Lazar M, Boudos R, DuBray MB, et al. (2007) Diffusion tensor imaging of the corpus callosum in autism. Neuroimage 34: 61–73.
[22]
Steinman L (2004) Elaborate interactions between the immune and nervous system. Nat Immunol 5: 575–581.
[23]
Ashwood P, Wills S, Van de Water J (2006) The immune response in autism: a new frontier for autism research. J Leukoc Biol 80: 1–15.
[24]
Braunschweig D, Ashwood P, Krakowiak P, Hertz-Picciotto I, Hansen R, et al. (2008) Autism: maternally derived antibodies specific for fetal brain proteins. Neuro Toxicology 29: 226–231.
[25]
Singer HS, Morris CM, Gause CD, Gillin PK, Crawford S, et al. (2008) Antibodies against fetal brain in sera of mothers with autistic children. J Neuroimmunol 194: 165–172.
[26]
Croen LA, Braunschweig D, Haapanen L, Yoshida CK, Fireman B, et al. (2008) Maternal mid-pregnancy autoantibodies to fetal brain protein: the early markers for autism study. Biol Psychiatry 64: 583–588.
[27]
Martin LA, Ashwood P, Braunschweig D, Cabanlit M, Van de Water J, et al. (2008) Sterotypies and hyperactivity in rhesus monkeys exposed to IgG from mothers of children with autism. Brain Behav Immun 22: 806–816.
[28]
Singer HS, Morris C, Gause C, Pollard M, Zimmerman AW, et al. (2009) Prenatal exposure to antibodies from mothers of children with autism produces neurobehavioral alterations: a pregnant dam mouse model. J Neuroimmunol 211: 39–48.
[29]
Moscavitch S-D, Szyper-Kravitz M, Shoenfeld Y (2009) Autoimmune pathology accounts for common manifestations in a wide range of neuro-psychiatric disorders: the olfactory and immune system interrelationship. Clin Immunol 130: 235–243.
[30]
Wills S, Cabanlit M, Bennet J, Ashwood P, Van de Water J (2007) Autoantibodies in autism spectrum disorders (ASD). Ann N Y Acad Sci 1107: 79–91.
[31]
Croen LA, Goines P, Braunschweig D, Yolken R, Yoshida CK, et al. (2008) Brain-derived neurotrophic factor and autism: maternal and infant peripheral blood levels in the early markers for autism (EMA) study. Autism Res 1: 130–137.
[32]
Cabanlit M, Wills S, Goines P, Ashwood P, Van de Water J (2007) Brain-specific autoantibodies in the plasma of subjects with autistic spectrum disorder. Ann N Y Sci 1107: 92–103.
[33]
Kirkman NJ, Libbey JE, Sweeten TL, Coon HH, Miller JN, et al. (2008) How relevant are GFAP autoantibodies in autism and Tourette syndrome? J Autism Dev Disord 38: 333–341.
[34]
Libbey JE, Coon HH, Kirkman NJ, Sweeten TL, Miller JN, et al. (2008) Are there enhanced MBP autoantibodies in autism? J Autism Dev Disord 38: 324–332.
[35]
Hoekstra PJ, Horst G, Limburg PC, Troost PW, van Lang N, et al. (2003) Increased seroactivity in tic disorder patients to a 60 KDa protein band from a neuronal cell line. J Neuroimmunol 141: 118–124.
[36]
Yang M, Clarke AM, Crawley JN (2009) Postnatal lesion evidence against a primary role for the corpus callosum in mouse sociability. Eur J Neurosci 29: 1663–1677.
[37]
Petkova SB, Yuan R, Tsaih SW, Schott W, Roopenian DC, et al. (2008) Genetic influence on immune phenotype revealed strain-specific variations in peripheral blood lineages. Physiol Genomics 34: 304–314.
[38]
Kustova Y, Grinberg A, Basile AS (1999) Increased blood-brain barrier permeability in LP-BM5 infected mice is mediated by neuroexcitatory mechanisms. Brain Res 839: 153–163.
[39]
Morrey JD, Olsen AL, Siddharthan V, Motter NE, Wang H, et al. (2008) Increased blood-brain barrier permeability is not a primary determinant for lethality of West Nile virus infection in rodents. J Gen Virol 89: 467–473.
[40]
Beauchesne é, Desjardins P, Hazell AS, Butterworth RF (2009) Altered expression of tight junction proteins and matrix metalloproteinases in thiamine-deficient mouse strain. Neurochem Intl 55: 275–281.
[41]
Blaylock RL, Strunecka A (2009) Immune-glutamatergic dysfunction as a central mechanism of the autism spectrum disorders. Curr Med Chem 16: 157–170.
[42]
Vargas DL, Nascimbene C, Krishnan C, Zimmerman AW, Pardo CA (2004) Neuroglial activation and neuroinflammation in the brain of patients with autism. Ann Neurol 57: 67–81.
[43]
Bilbo SD, Schwarz JM (2009) Early-life programming of later-life brain and behavior: a critical role for the immune system. Front Behav Neurosci 3: 1–14.
[44]
Torrente F, Ashwood P, Day R, Machado N, Furlano RI, et al. (2002) Small intestinal enteropathy with epithelial IgG and complement deposition in children with regressive autism. Mol Psychiatry 7: 375–382.
[45]
Theoharides TC, Kempuraj D, Tagen M, Conti P, Kalogeromitros D (2007) Differential release of mast cell mediators and pathogenesis of inflammation. Immunol Rev 217: 65–78.
[46]
Michaloudi HC, Papadopoulos GC (1999) Mast cells in the sheep, hedgehog and rat forebrain. J Anat 195: 577–586.
[47]
Hendren RL, Bertoglio K, Ashwood P, Sharp F (2009) Mechanistic biomarkers for autism treatment. Med. Hypotheses 73: 950–954.
[48]
Ashwood P, Enstrom A, Krakowiak P, Hertz-Picciotto I, Hansen RL, et al. (2008) Decreased transforming growth factor beta 1 in autism: a potential link between immune dysregulation and impairement in clinical behavioral outcomes. J Neuroimmunol 204: 149–153.
[49]
Smith SEP, Li J, Garbett K, Mirnics K, Patterson PH (2007) Maternal immune activation alters fetal brain development through interleukin-6. J Neurosci 27: 10695–10702.
[50]
Beach TG, Sue LI, Walker DG, Lue LF, Connor DJ, et al. (2007) Marked microglial reaction in normal aging human substantia nigra: correlation with extraneural neuromelanin pigment deposits. Acta Neuropathol 114: 419–424.
[51]
Theoharides TC, Angelidou A, Alysandratos KD, Zhang B, Asadi S, et al. (2010) Mast cell activation and autism. Biochim Biophys Acta. Dec 28.
[52]
Sayed BA, Christy AL, Walker ME, Brown MA (2010) Meningeal mast cells affect early T cell central nervous system infiltration and blood-brain barrier integrity through TNF: a role for neutrophil recruitment? J Immunol 184: 6891–6900.
[53]
Benno R, Smirnova Y, Vera S, Liggett A, Schanz N (2009) Exaggerated responses to stress in the BTBR T+tf/J mouse: an usual behavioral phenotype. Behav Brain Res 197: 462–465.
[54]
Scattoni ML, Gandhy SU, Ricceri L, Crawley JN (2008) Unusual repertoire of vocalizations in the BTBR T+tf/J mouse model of autism. PLoS ONE 3: e3067.
[55]
Bertrand J, Mars A, Boyle C, Bove F, Yeargin-Allsopp M, et al. (2001) Prevalence of autism in a United States population: The Brick Township, New Jersey, Investigation. Pediatrics 108: 1155–1161.
[56]
Rice CE, Baio J, Van Naarden BK, Doernberg N, Meaney FJ, et al. (2007) A public health collaboration for the surveillance of autism spectrum disorders. Paediatr Perinat Epidemiol 21: 179–190.
[57]
Abrahams BS, Geschwind DH (2008) Advances in autism genetics: on the threshold of a new neurobiology. Nat Rev Genet 9: 341–355.
[58]
O'Roak BJ, State MW (2008) Autism genetics: strategies, challenges, and opportunities. Autism Res 1: 4–17.
[59]
Kusek GK, Wahlsten D, Herron BJ, Bolivar VJ, Flaherty L (2007) Localization of two new X-linked quantitative trait loci controlling corpus callosum size in the mouse. Genes Brain Behav 6: 359–363.
[60]
Rosenberg RE, Law JK, Yenokyan G, McGready J, Kaufmann WE, et al. (2009) Characteristics and concordance of autism spectrum disorders among 277 twin pairs. Arch Pediatr Adolesc Med 163: 907–914.
[61]
Dantzer R, Kelley KW (2007) Twenty years of research on cytokine-induced sickness behavior. Brain Behav Immun 21: 153–160.
[62]
Stigler KA, Sweeten TL, Posey DJ, McDougle CJ (2009) Autism and immune factors: a comprehensive review. Res Autism Spectr Disord 3: 840–860.
[63]
Ogura Y, Sutterwala FS, Flavell RA (2006) The inflammasome: first line of the immune response to cell stress. Cell 126: 659–662.
[64]
Schmitz J, Owyang A, Oldham E, Song Y, Murphy E, et al. (2005) IL-33, an interleukin-1-like cytokine that signals via the IL-1 receptor-related protein ST2 and induces T helper type 2-associated cytokines. Immunity 23: 479–490.
[65]
Sugama S, Conti B (2008) Interleukin-18 and stress. Brain Res Rev 58: 85–95.
[66]
Wheeler RD, Brough D, Le Feuvre RA, Takeda K, Iwakura Y, et al. (2003) Interleukin-18 induces expression and release of cytokines from murine glial cells:interactions with interleukin-1β. J Neurochem 85: 1412–1420.
[67]
Morale MC, Serra PA, L'episcopo F, Tirolo C, Caniglia S, et al. (2006) Estrogen, neuroinflammation and neuroprotection in Parkinson's disease: glia dictates resistance versus vulnerability to neurodegeneration. Neuroscience 138: 869–878.
[68]
Brambilla P, Hardan A, di Nemi SU, Perez J, Soares JC, et al. (2003) Brain anatomy and development in autism: review of structural MRI studies. Brain Res Bull 61: 557–569.
[69]
Rothwell NJ (1999) Annual review prize lecture cytokines-killers in the brain? J Physiol 514: 3–17.
[70]
Bauer S, Kerr BJ, Patterson PH (2007) The neuropoietic cytokine family in development, plasticity, disease and injury. Nat Rev Neurosci 8: 221–232.
[71]
Hudson CA, Christophi GP, Gruber RC, Wilmore JR, Lawrence DA, et al. (2008) Induction of IL-33 expression and activity in central nervous system glia. J Leukoc Biol 84: 631–643.
[72]
Mondal TK, Saha SK, Miller VM, Seegal RF, Lawrence DA (2008) Autoantibody-mediated neuroinflammation: pathogenesis of neuropsychiatric systemic lupus erythematosus in the NZM88 murine model. Brain Behav Immun 22: 949–959.
[73]
Heo Y (2005) In vitro model for modulation of helper T cell differentiation and activation. In: Costa LG, Hodgson E, Lawrence DA, Reed DJ, editors. Current Protocols in Toxicology. John Wiley & Sons, New York, NY. pp. 18.9.1–18.9.9.
[74]
Milling SWF, Jenkins C, MacPherson G (2006) Collection of lymph-borne dendritic cells in the rat. Nat Protoc 1: 2263–2270.
[75]
Fischer H-G, Reichmann G (2000) Brain dendritic cells and macrophages/microglia in central nervous system inflammation. J Immunol 166: 2717–2726.
[76]
Campanella M, Sciorati C, Tarazzo G, Beltramo M (2002) Flow cytometry analysis of inflammatory cells in ischemic rat brain. Stroke 33: 586–592.
[77]
Panchision DM, Chen HL, Pistollato F, Papini D, Ni HT, et al. (2007) Optimized flow cytometric analysis of central nervous system tissue reveals novel functional relationships among cells expressing CD133, CD15, and CD24. Stem Cells 25: 1560–1570.
[78]
Paxonos G, Franklin KBJ (2004) “The Mouse Brain in Stereotaxic Coordinates. 2nd Edition. Elsevier Academic Press. 150 p.
[79]
Hafezi-Moghadam A, Thomas KL, Wagner DD (2007) ApoE deficiency leads to a progressive age-dependent blood-brain barrier leakage. Am J Physiol Cell Physiol 292: C1256–C1262.
[80]
Nadler JJ, Moy SS, Dold G, Trang D, Simmons N, Perez A, et al. (2004) Automated apparatus for quantitation of social approach behaviors in mice. Genes Brain Behav 3: 303–314.
[81]
Gao D, Kasten-Jolly J, Lawrence DA (2006) The paradoxical effects of lead in interferon-gamma knockout BALB/c mice. Toxicol Sci 89: 444–453.
[82]
Cao L, Lawrence DA (2002) Suppression of host resistance to Listeria monocytogenes by acute cold/resistant stress: lack of direct IL-6 involvement. J Neuroimmunol 133: 132–143.