Lhx3 is a LIM-homeodomain (LIM-HD) transcription factor that regulates neural cell subtype specification and pituitary development in vertebrates, and mutations in this protein cause combined pituitary hormone deficiency syndrome (CPHDS). The recently published structures of Lhx3 in complex with each of two key protein partners, Isl1 and Ldb1, provide an opportunity to understand the effect of mutations and posttranslational modifications on key protein-protein interactions. Here, we use small-angle X-ray scattering of an Ldb1-Lhx3 complex to confirm that in solution the protein is well represented by our previously determined NMR structure as an ensemble of conformers each comprising two well-defined halves (each made up of LIM domain from Lhx3 and the corresponding binding motif in Ldb1) with some flexibility between the two halves. NMR analysis of an Lhx3 mutant that causes CPHDS, Lhx3(Y114C), shows that the mutation does not alter the zinc-ligation properties of Lhx3, but appears to cause a structural rearrangement of the hydrophobic core of the LIM2 domain of Lhx3 that destabilises the domain and/or reduces the affinity of Lhx3 for both Ldb1 and Isl1. Thus the mutation would affect the formation of Lhx3-containing transcription factor complexes, particularly in the pituitary gland where these complexes are required for the production of multiple pituitary cell types and hormones.
References
[1]
Sheng HZ, Zhadanov AB, Mosinger B Jr, Fujii T, Bertuzzi S, et al. (1996) Specification of pituitary cell lineages by the LIM homeobox gene Lhx3. Science 272: 1004–1007.
[2]
Thaler JP, Lee SK, Jurata LW, Gill GN, Pfaff SL (2002) LIM factor Lhx3 contributes to the specification of motor neuron and interneuron identity through cell-type-specific protein-protein interactions. Cell 110: 237–249.
[3]
Sharma K, Sheng HZ, Lettieri K, Li H, Karavanov A, et al. (1998) LIM homeodomain factors Lhx3 and Lhx4 assign subtype identities for motor neurons. Cell 95: 817–828.
[4]
Netchine I, Sobrier ML, Krude H, Schnabel D, Maghnie M, et al. (2000) Mutations in LHX3 result in a new syndrome revealed by combined pituitary hormone deficiency. Nat Genet 25: 182–186.
[5]
Sloop KW, Parker GE, Hanna KR, Wright HA, Rhodes SJ (2001) LHX3 transcription factor mutations associated with combined pituitary hormone deficiency impair the activation of pituitary target genes. Gene 265: 61–69.
[6]
Howard PW, Maurer RA (2001) A point mutation in the LIM domain of Lhx3 reduces activation of the glycoprotein hormone alpha-subunit promoter. J Biol Chem 276: 19020–19026.
[7]
Pfaeffle RW, Savage JJ, Hunter CS, Palme C, Ahlmann M, et al. (2007) Four novel mutations of the LHX3 gene cause combined pituitary hormone deficiencies with or without limited neck rotation. J Clin Endocrinol Metab 92: 1909–1919.
[8]
Savage JJ, Hunter CS, Clark-Sturm SL, Jacob TM, Pfaeffle RW, et al. (2007) Mutations in the LHX3 gene cause dysregulation of pituitary and neural target genes that reflect patient phenotypes. Gene 400: 44–51.
[9]
Rajab A, Kelberman D, de Castro SCP, Biebermann H, Shaikh H, et al. (2008) Novel mutations in LHX3 are associated with hypopituitarism and sensorineural hearing loss. Human Mol Genet 17: 2150–2159.
[10]
Parker GE, West BE, Witzmann FA, Rhodes SJ (2005) Serine/threonine/tyrosine phosphorylation of the LHX3 LIM-homeodomain transcription factor. J Cell Biochem 94: 67–80.
[11]
Matthews JM, Bhati M, Lehtomaki E, Mansfield RE, Cubeddu L, et al. (2009) It takes two to tango: the structure and function of LIM, RING, PHD and MYND domains. Current Pharmeceutical Design 15: 3681–3696.
[12]
Jurata LW, Pfaff SL, Gill GN (1998) The nuclear LIM domain interactor NLI mediates homo- and heterodimerization of LIM domain transcription factors. J Biol Chem 273: 3152–3157.
[13]
Bhati M, Lee C, Nancarrow AL, Lee M, Craig VJ, et al. (2008) Implementing the LIM code: the structural basis for cell type-specific assembly of LIM-homeodomain complexes. EMBO J 27: 2018–2029.
[14]
Agulnick AD, Taira M, Breen JJ, Tanaka T, Dawid IB, et al. (1996) Interactions of the LIM-domain-binding factor Ldb1 with LIM homeodomain proteins. Nature 384: 270–272.
Bach I, Rhodes SJ, Pearse RV, 2nd, Heinzel T, Gloss B, et al (1995) P-Lim, a LIM homeodomain factor, is expressed during pituitary organ and cell commitment and synergizes with Pit-1. Proc Natl Acad Sci U S A 92: 2720–2724.
[17]
Howard PW, Maurer RA (2000) Identification of a conserved protein that interacts with specific LIM homeodomain transcription factors. J Biol Chem 275: 13336–13342.
[18]
Yarden BC, Savage JJ, Hunter CS, Rhodes SJ (2005) DNA recognition properties of the LHX3b LIM homeodomain transcription factor. Mol Biol Rep 32: 1–6.
[19]
Sloop KW, Meier BC, Bridwell JL, Parker GE, Schiller AM, et al. (1999) Differential activation of pituitary hormone genes by human Lhx3 isoforms with distinct DNA binding properties. Mol Endocrinol 13: 2212–2225.
[20]
Lee S, Lee B, Joshi K, Pfaff SL, Lee JW, et al. (2008) A regulatory network to segregate the identity of neuronal subtypes. Dev Cell 14: 877–889.
[21]
Lee SK, Pfaff SL (2003) Synchronization of neurogenesis and motor neuron specification by direct coupling of bHLH and homeodomain transcription factors. Neuron 38: 731–745.
[22]
Thaler J, Harrison K, Sharma K, Lettieri K, Kehrl J, et al. (1999) Active suppression of interneuron programs within developing motor neurons revealed by analysis of homeodomain factor HB9. Neuron 23: 675–687.
[23]
Gadd MS, Langley DB, Guss JM, Matthews JM (2009) Crystallization and diffraction of an Lhx4-Isl2 complex. Acta Crystallogr Sect F Struct Biol Cryst Commun 65: 151–153.
[24]
Bhati M, Lee M, Nancarrow AL, Bach I, Guss JM, et al. (2008) Crystallization of an Lhx3-Isl1 complex. Acta Crystallogr Sect F Struct Biol Cryst Commun 64: 297–299.
[25]
Lee C, Nancarrow AL, Bach I, Mackay JP, Matthews JM (2005) Letter to the Editor: 1H, 15N and 13C assignments of an intramolecular Lhx3:ldb1 complex. J Biomol NMR 33: 198.
[26]
Gadd MS, Bhati M, Jeffries CM, Langley DB, Trewhella J, et al. (2011) Structural Basis for Partial Redundancy in a Class of Transcription Factors, the LIM Homeodomain Proteins, in Neural Cell Type Specification. J Biol Chem 286: 42971–42980.
[27]
Deane JE, Ryan DP, Sunde M, Maher MJ, Guss JM, et al. (2004) Tandem LIM domains provide synergistic binding in the LMO4:Ldb1 complex. EMBO J 23: 3589–3598.
[28]
Sreerama N, Woody RW (2000) Estimation of protein secondary structure from circular dichroism spectra: comparison of CONTIN, SELCON, and CDSSTR methods with an expanded reference set. Anal Biochem 287: 252–260.
[29]
Pelton JG, Torchia DA, Meadow ND, Roseman S (1993) Tautomeric states of the active-site histidines of phosphorylated and unphosphorylated IIIGlc, a signal-transducing protein from Escherichia coli, using two-dimensional heteronuclear NMR techniques. Protein Sci 2: 543–558.
[30]
Goddard TD, Kneller DG (2007) Sparky - NMR Assignment and Integration Software, Version 3.
[31]
Wishart DS, Bigam CG, Yao J, Abildgaard F, Dyson HJ, et al. (1995) 1H, 13C and 15N chemical shift referencing in biomolecular NMR. J Biomol NMR 6: 135–140.
[32]
Jeffries CM, Whitten AE, Harris SP, Trewhella J (2008) Small-angle X-ray scattering reveals the N-terminal domain organization of cardiac myosin binding protein C. J Mol Biol 377: 1186–1199.
[33]
Orthaber D, Bergmann A, Glatter O (2000) SAXS experiments on absolute scale with Kratky systems using water as a secondary standard. J Appl Crystallogr 33: 218–225.
[34]
Bergmann A, Fritz G, Glatter O (2000) Solving the generalized indirect Fourier transformation (GIFT) by Boltzmann simplex simulated annealing (BSSA). J Appl Crystallogr 33: 1212–1216.
[35]
Svergun DI (1992) Determination of the Regularization Parameter in Indirect-Transform Methods Using Perceptual Criteria. J Appl Crystallogr 25: 495–503.
[36]
Whitten AE, Cai SZ, Trewhella J (2008) MULCh: modules for the analysis of small-angle neutron contrast variation data from biomolecular assemblies. J Appl Crystallogr 41: 222–226.
[37]
Konarev PV, Volkov VV, Sokolova AV, Koch MHJ, Svergun DI (2003) PRIMUS: a Windows PC-based system for small-angle scattering data analysis. J Appl Crystallogr 36: 1277–1282.
[38]
Franke D, Svergun DI (2009) DAMMIF, a program for rapid ab-initio shape determination in small-angle scattering. J Appl Crystallog 42: 342–346.
[39]
Volkov VV, Svergun DI (2003) Uniqueness of ab initio shape determination in small-angle scattering. J Appl Crystallogr 36: 860–864.
[40]
Petoukhov MV, Svergun DI (2005) Global Rigid Body Modeling of Macromolecular Complexes against Small-Angle Scattering Data. Biophysical J 89: 1237–1250.
[41]
Svergun D, Barberato C, Koch MHJ (1995) CRYSOL - A program to evaluate x-ray solution scattering of biological macromolecules from atomic coordinates. J Appl Crystallogr 28: 768–773.
[42]
Jacques DA, Trewhella J (2010) Small-angle scattering for structural biology–Expanding the frontier while avoiding the pitfalls. Protein Sci 19: 642–657.
[43]
Svergun DI, Koch MHJ (2003) Small-angle scattering studies of biological macromolecules in solution. Rep Pron Phys 66: 1735.
[44]
Trewhella J (2001) Low Angle Scattering of Neutrons and X-rays. Encyclopedia of Life Sciences. Chichester: John Wiley and Sons.
[45]
Hurley JH, Dean AM, Sohl JL, Koshland DE Jr, Stroud RM (1990) Regulation of an enzyme by phosphorylation at the active site. Science 249: 1012–1016.
[46]
Jeffries C, Graham S, Stokes PH, Collyer CA, Guss JM, et al. (2006) Stabilization of a binary protein complex through intein-mediated circularization. Protein Sci 15: 2612–2618.
[47]
El Omari K, Hoosdally SJ, Tuladhar K, Karia D, Vyas P, et al. (2011) Structure of the leukemia oncogene LMO2: implications for the assembly of a hematopoietic transcription factor complex. Blood 117: 2146–2156.
[48]
Sheng HZ, Moriyama K, Yamashita T, Li H, Potter SS, et al. (1997) Multistep control of pituitary organogenesis. Science 278: 1809–1812.