全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
PLOS ONE  2012 

Chronic Nerve Growth Factor Exposure Increases Apoptosis in a Model of In Vitro Induced Conjunctival Myofibroblasts

DOI: 10.1371/journal.pone.0047316

Full-Text   Cite this paper   Add to My Lib

Abstract:

In the conjunctiva, repeated or prolonged exposure to injury leads to tissue remodeling and fibrosis associated with dryness, lost of corneal transparency and defect of ocular function. At the site of injury, fibroblasts (FB) migrate and differentiate into myofibroblasts (myoFB), contributing to the healing process together with other cell types, cytokines and growth factors. While the physiological deletion of MyoFB is necessary to successfully end the healing process, myoFB prolonged survival characterizes the pathological process of fibrosis. The reason for myoFB persistence is poorly understood. Nerve Growth Factor (NGF), often increased in inflamed stromal conjunctiva, may represent an important molecule both in many inflammatory processes characterized by tissue remodeling and in promoting wound-healing and well-balanced repair in humans. NGF effects are mediated by the specific expression of the NGF neurotrophic tyrosine kinase receptor type 1 (trkANGFR) and/or the pan-neurotrophin glycoprotein receptor (p75NTR). Therefore, a conjunctival myoFB model (TGFβ1-induced myoFB) was developed and characterized for cell viability/proliferation as well as αSMA, p75NTR and trkANGFR expression. MyoFB were exposed to acute and chronic NGF treatment and examined for their p75NTR/trkANGFR, αSMA/TGFβ1 expression, and apoptosis. Both NGF treatments significantly increased the expression of p75NTR, associated with a deregulation of both αSMA/TGFβ1 genes. Acute and chronic NGF exposures induced apoptosis in p75NTR expressing myoFB, an effect counteracted by the specific trkANGFR and/or p75NTR inhibitors. Focused single p75NTR and double trkANGFR/p75NTR knocking-down experiments highlighted the role of p75NTR in NGF-induced apoptosis. Our current data indicate that NGF is able to trigger in vitro myoFB apoptosis, mainly via p75NTR. The trkANGFR/p75NTR ratio in favor of p75NTR characterizes this process. Due to the lack of effective pharmacological agents for balanced tissue repairs, these new findings suggest that NGF might be a suitable therapeutic tool in conditions with impaired tissue healing.

References

[1]  Solomon A, Puxeddu I, Levi-Schaffer F (2003) Fibrosis in ocular allergic inflammation: recent concepts in the pathogenesis of ocular allergy. Curr Opin Allergy Clin Immunol 3: 389–393.
[2]  Fukuda K, Kumagai N, Fujitsu Y, Nishida T (2006) Fibroblasts as local immune modulators in ocular allergic disease. Allergol Int. 55: 121–129.
[3]  Lorena D, Uchio K, Costa AM, Desmouliere A (2002) Normal scarring: importance of myofibroblasts. Wound Repair Regen 10: 86–92.
[4]  Tomasek JJ, Gabbiani G, Hinz B, Chaponnier C, Brown RA (2002) Myofibroblasts and mechano-regulation of connective tissue remodelling. Nature Rev Mol Cell Biol 3: 349–363.
[5]  Wynn TA (2008) Cellular and molecular mechanisms of fibrosis. J. Pathol. 214: 199–210.
[6]  Kasemkijwattana C, Menetrey J, Bosch P, Somogyi G, Moreland MS, et al. (2000) Use of growth factors to improve muscle healing after strain injury. Clin Orthop Relat Res 370: 272–285.
[7]  Levi-Montalcini R (1987) The nerve growth factor 35 years later. Science 237: 1154–1162.
[8]  Sofroniew MV, Howe CL, Mobley WC (2001) Nerve growth factor signaling, neuroprotection, and neural repair. Annu Rev Neurosci 24: 1217–1281.
[9]  Bonini St, Lambiase A, Rama P, Caprioglio G, Aloe L (2000) Topical treatment with nerve growth factor for neurotrophic keratitis. Ophthalmology 107: 1347–1352.
[10]  Micera A, Lambiase A, Aloe L, Bonini Se, Levi-Schaffer F, et al. (2004) Nerve growth factor involvement in the visual system: implications in allergic and neurodegenerative diseases. Cytokine & Growth Factor Reviews 15: 411–417.
[11]  Micera A, Puxeddu I, Aloe L, Levi-Schaffer F (2003) New insights on the involvement of Nerve Growth Factor in allergic inflammation and fibrosis. Cytokine & Growth Factor Reviews 14: 369–374.
[12]  Frade JM, Rodriguez-Tebar A, Barde YA (1996) Induction of cell death by endogenous nerve growth factor through its p75 receptor. Nature 383: 166–168.
[13]  Micera A, Puxeddu I, Lambiase A, Antonelli A, Bonini Se, et al. (2005) The pro-fibrogenic effect of nerve growth factor on conjunctival fibroblasts is mediated by transforming growth factor-beta. Clin Exp Allergy 35: 650–656.
[14]  Micera A, Lambiase A, Puxeddu I, Aloe L, Stampachiacchiere B, et al. (2006) Nerve growth factor effect on human primary fibroblastic-keratocytes: possible mechanism during corneal healing. Exp Eye Res 83: 747–757.
[15]  Yoon SO, Casaccia-Bonnefil P, Carter B, Chao MV (1998) Competitive signaling between TrkA and p75 nerve growth factor receptors determines cell survival. J Neurosci 18: 3273–3281.
[16]  Wehrman T, He X, Raab B, Dukipatti A, Blau H, et al. (2007) Structural and mechanistic insights into Nerve Growth Factor interactions with the TrkA and p75 Receptors. Neuron 53: 25–38.
[17]  Desmouliere A, Geinoz A, Gabbiani F, Gabbiani G (1993) Transforming growth factor-beta 1 induces alpha-smooth muscle actin expression in granulation tissue myofibroblasts and in quiescent and growing cultured fibroblasts. J Cell Biol 122: 103–111.
[18]  Micera A, Vigneti E, Pappo O, Pickholtz D, Reich R, et al. (2001) Nerve growth factor displays stimulatory effects on human skin and lung fibroblasts, demonstrating a direct role for this factor in tissue repair. Proc Natl Acad Sci USA 98: 6162–6167.
[19]  Lambiase A, Bonini St, Micera A, Rama P, Bonini Se, et al. (1998) Expression of nerve growth factor receptors on the ocular surface in healthy subjects and during manifestation of inflammatory diseases. Invest Ophthalmol Vis Sci 39: 1272–1275.
[20]  Lambiase A, Mantelli F, Sacchetti M, Rossi S, Aloe L, et al. (2011) Clinical applications of NGF in ocular diseases. Arch Ital Biol. 149: 283–292.
[21]  Lambiase A, Manni L, Bonini S, Rama P, Micera A, et al. (2000) Nerve growth factor promotes corneal healing: structural, biochemical and molecular analysis of rat and human corneas. Invest Ophthalmol Vis Sci 41: 1063–1069.
[22]  Matsuda H, Koyama H, Sato H, Sawada J, Itakura A, et al. (1998) Role of nerve growth factor in cutaneous wound healing: accelerating effects in normal and healing-impaired diabetic mice. J Exp Med 187: 297–306.
[23]  Kawamoto K, Matsuda H (2004) Nerve growth factor and wound healing. Progress in Brain Research 146: 369–384.
[24]  Micera A, Lambiase L, Stampachiacchiere B, Bonini St, Bonini Se, et al. (2007) Nerve growth factor and tissue repair remodeling: trkA(NGFR) and p75(NTR), two receptors one fate. Cytokine Growth Factor Rev 18: 245–256.
[25]  Hasan W, Zhang R, Liu M, Warn JD, Smith PG (2000) Coordinate expression of NGF and alpha-smooth muscle actin mRNA and protein in cutaneous wound tissue of developing and adult rats. Cell Tissue Res 300: 97–109.
[26]  Zhang HY, Phan SH (1999) Inhibition of myofibroblast apoptosis by transforming growth factor beta(1). Am J Respir Cell Mol Biol 21: 658–665.
[27]  Desmouliere A, Badid C, Bochaton-Piallat ML, Gabbiani G (1997) Apoptosis during wound healing, fibrocontractive diseases and vascular wall injury. Int J Biochem Cell Biol 29: 19–30.
[28]  Greenhalgh DG (1998) The role of apoptosis in wound healing. Int J Biochem Cell Biol 30: 1019–1030.
[29]  Ramos C, Monta?o M, Becerril C, Cisneros-Lira J, Barrera L, et al. (2006) Acidic fibroblast growth factor decreases alpha-smooth muscle actin expression and induces apoptosis in human normal lung fibroblasts. Am J Physiol Lung Cell Mol Physiol 291: L871–L879.
[30]  Adzick NS, Lorenz HP (1994) Cells, matrix, growth factors, and the surgeon. The biology of scarless fetal wound repair. Ann Surg 220: 10–18.
[31]  Milhavet O, Gary DS, Mattson MP (2003) RNA interference in biology and medicine. Pharmacol Rev 55: 629–648.
[32]  Bandtlow C, Dechant G (2004) From cell death to neuronal regeneration, effects of the p75 neurotrophin receptor depend on interactions with partner subunits. Sci STKE. 235: pe24.
[33]  Chou TT, Trojanowski JQ, Lee VM (2000) A novel apoptotic pathway induced by nerve growth factor-mediated TrkA activation in medulloblastoma. J Biol Chem 275: 565–570.
[34]  Wang S, Bray P, McCaffrey T, March K, Hempstead BL, et al. (2000) p75NTR mediates neurotrophin-induced apoptosis of vascular smooth muscle cells. Am J Pathol 157: 1247–1258.
[35]  Trim N, Morgan S, Evans M, Issa R, Fine D, et al. (2000) Hepatic stellate cells express the low affinity nerve growth factor receptor p75 and undergo apoptosis in response to nerve growth factor stimulation. Am J Pathol 156: 1235–1243.
[36]  Oakley F, Trim N, Constandinou CM, Ye W, Gray AM, et al. (2003) Hepatocytes express nerve growth factor during liver injury: evidence for paracrine regulation of hepatic stellate cell apoptosis. Am J Pathol 163: 1849–1858.
[37]  Passino MA, Adams RA, Sikorski SL, Akassoglou K (2007) Regulation of hepatic stellate cell differentiation by the neurotrophin receptor p75NTR. Science 315: 1853–1856.
[38]  Kaur H, Chaurasia SS, Agrawal V, Suto C, Wilson SE (2009) Corneal myofibroblast viability: opposing effects of IL-1 and TGF beta1. Exp Eye Res. 89: 152–158.
[39]  Huang M, Sharma S, Zhu LX, Keane MP, Luo J, et al. (2002) IL-7 inhibits fibroblast TGF-beta production and signaling in pulmonary fibrosis. J Clin Invest. 109: 931–937.
[40]  Arora PD, McCulloch CA (1999) The deletion of transforming growth factor-beta-induced myofibroblasts depends on growth conditions and actin organization. Am J Pathol 155: 2087–2099.
[41]  Pfaffl MW, Horgan GW, Dempfle L (2002) Relative expression software tool (REST) for group-wise comparison and statistical analysis of relative expression results in real-time PCR. Nucleic Acids Res 30: e36.
[42]  Rieger AM, Nelson KL, Konowalchuk JD, Barreda DR (2011) Modified Annexin V/Propidium iodide apoptosis assay for accurate assessment of cell death. J Vis Exp. (50). pii: 2597. doi: 10.3791/2597.
[43]  McCarthy MJ, Rubin LL, Philpott KL (1997) Involvement of caspases in sympathetic neuron apoptosis. J Cell Sci 110: 2165–2173.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133