Rtms5 is an deep blue weakly fluorescent GFP-like protein (, 592 nm; , 630nm; ΦF, 0.004) that contains a 66Gln-Tyr-Gly chromophore tripeptide sequence. We investigated the optical properties and structure of two variants, Rtms5Y67F and Rtms5Y67F/H146S in which the tyrosine at position 67 was substituted by a phenylalanine. Compared to the parent proteins the optical spectra for these new variants were significantly blue-shifted. Rtms5Y67F spectra were characterised by two absorbing species (, 440 nm and 513 nm) and green fluorescence emission (, 440 nm; , 508 nm; ΦF, 0.11), whilst Rtms5Y67F/H146S spectra were characterised by a single absorbing species (, 440 nm) and a relatively high fluorescence quantum yield (ΦF, 0.75; , 440 nm; , 508 nm). The fluorescence emissions of each variant were remarkably stable over a wide range of pH (3–11). These are the first GFP-like proteins with green emissions (500–520 nm) that do not have a tyrosine at position 67. The X-ray crystal structure of each protein was determined to 2.2 ? resolution and showed that the benzylidine ring of the chromophore, similar to the 4-hydroxybenzylidine ring of the Rtms5 parent, is non-coplanar and in the trans conformation. The results of chemical quantum calculations together with the structural data suggested that the 513 nm absorbing species in Rtms5Y67F results from an unusual form of the chromophore protonated at the acylimine oxygen. These are the first X-ray crystal structures for fluorescent proteins with a functional chromophore containing a phenylalanine at position 67.
References
[1]
Shaner NC, Patterson GH, Davidson MW (2007) Advances in fluorescent protein technology. J Cell Sci 120: 4247–4260.
[2]
Chudakov DM, Matz MV, Lukyanov S, Lukyanov KA (2010) Fluorescent proteins and their applications in imaging living cells and tissues. Physiol Rev 90: 1103–1163.
[3]
Chalfie M, Tu Y, Euskirchen G, Ward WW, Prasher DC (1994) Green fluorescent protein as a marker for gene expression. Science 263: 802–805.
[4]
Matz MV, Fradkov AF, Labas YA, Savitsky AP, Zaraisky AG, et al. (1999) Fluorescent proteins from nonbioluminescent Anthozoa species. Nat Biotechnol 17: 969–973.
[5]
Gurskaya NG, Fradkov AF, Terskikh A, Matz MV, Labas YA, et al. (2001) GFP-like chromoproteins as a source of far-red fluorescent proteins. FEBS Lett. 507: 16–20.
[6]
Heim R, Prasher DC, Tsien RY (1994) Wavelength mutations and posttranslational autoxidation of green fluorescent protein. Proc Natl Acad Sci U S A. 91: 12501–12504.
[7]
Cubitt AB, Heim R, Adams SR, Boyd AE, Gross LA, et al. (1995) Understanding, improving and using green fluorescent protein. Trends Biochem Sci. 20: 448–455.
[8]
Tomosugi W, Matsuda T, Tani T, Nemoto T, Kotera I, et al. (2009) An ultramarine fluorescent protein with increased photostability and pH insensitivity. Nat Methods 6: 351–353.
[9]
Wachter RM, Watkins JL, Kim H (2010) Mechanistic diversity of red fluorescence acquisition by GFP-like proteins. Biochemistry 49: 7417–7427.
[10]
Gross LA, Baird GS, Hoffman RC, Baldridge KK, Tsien RY (2000) The structure of the chromophore within DsRed, a red fluorescent protein from coral. Proc Natl Acad Sci U S A 97: 11990–11995.
[11]
Wiedenmann J, Schenk A, R?cker C, Girod A, Spindler KD, et al. (2002) A far-red fluorescent protein with fast maturation and reduced oligomerization tendency from Entacmaea quadricolor (Anthozoa, Actinaria). Proc Natl Acad Sci U S A. 99: 11646–11651.
[12]
Cubitt AB, Woollenweber LA, Heim R (1999) Understanding structure-function relationships in the Aequorea victoria green fluorescent protein. Methods Cell Biol 58: 19–30.
[13]
Shu X, Wang L, Colip L, Kallio K, Remington SJ (2008) Unique interactions between the chromophore and glutamate 16 lead to far-red emission in a red fluorescent protein. Protein Sci. 18: 460–466.
[14]
Lin MZ, McKeown MR, Ng H, Aguilera TA, Shaner NC, et al. (2009) Autofluorescent Proteins with Excitation in the Optical Window for Intravital Imaging in Mammals. J. Chembiol. 16: 1169–1179.
[15]
Prescott M, Ling M, Beddoe T, Oakley AJ, Dove S, et al. (2003) The 2.2 A crystal structure of a pocilloporin pigment reveals a nonplanar chromophore conformation. Structure. 11: 275–284.
[16]
Battad JM, Wilmann PG, Olsen SC, Byres E, Smith SC, et al. (2007) A Structural Basis for the pH-dependent Increase in Fluorescence Efficiency of Chromoproteins. J Mol Biol 368: 998–1010.
[17]
Wilmann PG, Battad JM, Beddoe T, Olsen S, Smith SC, et al. (2006) The 2.0 angstroms crystal structure of a pocilloporin at pH 3.5: the structural basis for the linkage between color transition and halide binding. Photochem Photobiol 82: 359–366.
[18]
Turcic K, Pettikiriarachchi A, Battad J, Wilmann PG, Rossjohn J, et al. (2006) Amino acid substitutions around the chromophore of the chromoprotein Rtms5 influence polypeptide cleavage. Biochem Biophys Res Commun 340: 1139–1143.
[19]
Barondeau DP, Kassmann CJ, Tainer JA, Getzoff ED (2007) The case of the missing ring: radical cleavage of a carbon-carbon bond and implications for GFP chromophore biosynthesis. J Am Chem Soc. 129: 3118–3126.
[20]
Pakhomov AA, Pletneva NV, Balashova TA, Martynov VI (2006) Structure and reactivity of the chromophore of a GFP-like chromoprotein from Condylactis gigantea. Biochemistry. 45: 7256–7264.
[21]
Olsen S (2012) A quantitative quantum chemical model of the Dewar–Knott color rule for cationic diarylmethanes. Chem. Phys. Lett. 532: 106–109.
[22]
Krissinel E, Henrick K (2007) Inference of macromolecular assemblies from crystalline state. J Mol Biol. 372: 774–797.
[23]
Olsen SC, Smith SC (2006) Trans–cis Isomerism and acylimine formation in DsRed chromophore models: Intrinsic rotation barriers. Chem. Phys. Lett. 426: 159–162.
[24]
Olsen SC, Smith SC (2007) Radiationless decay of red fluorescent protein chromophore models via twisted intramolecular charge-transfer states. J. Am. Chem. Soc. 129: 2054–2065.
[25]
Ai HW, Shaner NC, Cheng Z, Tsien RY, Campbell RE (2007) Exploration of new chromophore structures leads to the identification of improved blue fluorescent proteins. Biochemistry 46: 5904–5910.
[26]
Petersen J, Wilmann PG, Beddoe T, Oakley AJ, Devenish RJ, et al. (2003) The 2.0-? Crystal Structure of eqFP611, a Far Red Fluorescent Protein from the Sea Anemone Entacmaea quadricolor. J. Biol. Chem. 278: 44626–44631.
[27]
Subach OM, Malashkevich VN, Zencheck WD, Morozova KS, Piatkevich KD, et al (2010) Structural characterization of acylimine-containing blue and red chromophores in mTagBFP and TagRFP fluorescent proteins. Chem Biol. 17: 333–341.
[28]
Andresen M, Stiel AC, Trowitzsch S, Weber G, Eggeling C, et al. (2007) Structural basis for reversible photoswitching in Dronpa. Proc Natl Acad Sci U S A. 104: 13005–13009.
[29]
Chica RA, Moore MM, Allen BD, Mayo SL (2010) Generation of longer emission wavelength red fluorescent proteins using computationally designed libraries. Proc Natl Acad Sci U S A. 107: 20257–20262.
[30]
Olsen S, Prescott M, Wilmann P, Battad J, Rossjohn J, et al. (2006) Determination of chromophore charge states in the low pH colour transition of the fluorescent protein Rtms5H146S via time-dependent DFT. Chemical Physical Letters. 420: 507–511.
[31]
Zapata-Hommer O, Griesbeck O (2003) Efficently folding and circularly permuted variants of the Sapphire mutant of GFP. BMC Biotechnol. 3: 5.
[32]
Rosado CJ, Mijaljica D, Hatzinisiriou I, Prescott M, Devenish RJ (2008) Rosella: a fluorescent pH-biosensor for reporting vacuolar turnover of cytosol and organelles in yeast. Autophagy. 4: 205–213.
[33]
Pettikiriarachchi A, Gong L, Perugini MA, Devenish RJ, Prescott M (2012) Ultramarine, a chromoprotein acceptor for f?rster resonance energy transfer. PLoS One. 7: e41028.
[34]
Lackowicz JR (1983) Principles of Fluorescence Spectrometry. New York: Plenum Press. 954 p.
[35]
Otwinowski Z, Minor W (1997) Processing of X-ray Diffraction Data Collected in Oscillation Mode. In: Carter CW Jr, Sweet RM, editors. Methods in Enzymology 276: Macromolecular Crystallography, part A. New York: Academic Press. 307–326.
[36]
Kabsch W (2010) XDS. Acta Crystallogr D Biol Crystallogr. 66: 125–132.
Winn MD, Ballard CC, Cowtan KD, Dodson EJ, Emsley P, et al. (2011) Overview of the CCP4 suite and current developments. Acta Crystallogr D Biol Crystallogr. 67: 235–242.
[39]
Winn MD, Murshudov GN, Papiz MZ (2003) Macromolecular TLS refinement in REFMAC at moderate resolutions. Methods Enzymol. 374: 300–321.
[40]
Emsley P, Lohkamp B, Scott WG, Cowtan K (2010) Features and development of Coot. Acta Crystallogr D Biol Crystallogr. 66: 486–501.
[41]
Chen VB, Arendall WB 3rd, Headd JJ, Keedy DA, Immormino RM, et al (2010) MolProbity: all-atom structure validation for macromolecular crystallography. Acta Crystallogr D Biol Crystallogr. 66: 12–21.
[42]
Adams PD, Afonine PV, Bunkóczi G, Chen VB, Davis IW, et al. (2010) PHENIX: a comprehensive Python-based system for macromolecular structure solution. Acta Crystallogr D Biol Crystallogr. 66: 213–221.
[43]
Vagin AA, Steiner RA, Lebedev AA, Potterton L, McNicholas S, et al. (2004) REFMAC5 dictionary: organization of prior chemical knowledge and guidelines for its use. Acta Crystallogr D Biol Crystallogr. 60: 2184–2195.
[44]
Vaguine AA, Richelle J, Wodak SJ (1999) SFCHECK: a unified set of procedures for evaluating the quality of macromolecular structure-factor data and their agreement with the atomic model. Acta Crystallogr D Biol Crystallogr. 55: 191–205.
[45]
Laskowski RA, MacArthur MW, Moss DS, Thornton JM (1993) PROCHECK - a program to check the stereochemical quality of protein structures. J. App. Cryst. 26: 283–291.
[46]
Lovell SC, Davis IW, Arendall WB 3rd, de Bakker PI, Word JM, et al (2003) Structure validation by Calpha geometry: phi,psi and Cbeta deviation. Proteins. 50: 437–450.
[47]
Azhary AE, Rauhut G, Pulay P, Werner H-J (1998) Analytical energy gradients for local second-order M?ller-Plesset perturbation theory. J. Chem. Phys. 108: 5185–5193.
[48]
Dunning TH (1989) Gaussian basis sets for use in correlated molecular calculations. I. The atoms boron through neon and hydrogen. J. Chem. Phys. 90: 1007–1023.
[49]
Finley J, Malmqvist P-A, Roos BJ, Serrano-Andrés L (1998) The multi-state CASPT2 method. Chem. Phys. Lett. 288: 299–306.
[50]
Celani P, Werner H (2000) Multireference perturbation theory for large restricted and selected active space reference wave functions. J. Chem. Phys. 112: 5546–5557.
[51]
Olsen S (2010) A Modified Resonance-Theoretic Framework for Structure?Property Relationships in a Halochromic Oxonol Dye. J. Chem. Theory Comput. 6: 1089–1103.
[52]
Olsen S, Mckenzie RH (2010) A dark excited state of fluorescent protein chromophores, considered as Brooker dyes. Chem. Phys. Lett. 492: 150–156.
[53]
Olsen S, Mckenzie RH (2011) Bond alternation, polarizability, and resonance detuning in methine dyes. J. Chem. Phys. 134: 114520–114513.
[54]
Werner H-J, Knowles PJ, Knizia G, Manby FR, Schütz M (2012) Molpro: a general-purpose quantum chemistry program package. WIREs Comput Mol Sci. 2: 242–253.