全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
PLOS ONE  2012 

Of Mice, Birds, and Men: The Mouse Ultrasonic Song System Has Some Features Similar to Humans and Song-Learning Birds

DOI: 10.1371/journal.pone.0046610

Full-Text   Cite this paper   Add to My Lib

Abstract:

Humans and song-learning birds communicate acoustically using learned vocalizations. The characteristic features of this social communication behavior include vocal control by forebrain motor areas, a direct cortical projection to brainstem vocal motor neurons, and dependence on auditory feedback to develop and maintain learned vocalizations. These features have so far not been found in closely related primate and avian species that do not learn vocalizations. Male mice produce courtship ultrasonic vocalizations with acoustic features similar to songs of song-learning birds. However, it is assumed that mice lack a forebrain system for vocal modification and that their ultrasonic vocalizations are innate. Here we investigated the mouse song system and discovered that it includes a motor cortex region active during singing, that projects directly to brainstem vocal motor neurons and is necessary for keeping song more stereotyped and on pitch. We also discovered that male mice depend on auditory feedback to maintain some ultrasonic song features, and that sub-strains with differences in their songs can match each other's pitch when cross-housed under competitive social conditions. We conclude that male mice have some limited vocal modification abilities with at least some neuroanatomical features thought to be unique to humans and song-learning birds. To explain our findings, we propose a continuum hypothesis of vocal learning.

References

[1]  Fischer J, Hammerschmidt K (2010) Ultrasonic vocalizations in mouse models for speech and socio-cognitive disorders: insights into the evolution of vocal communication. Genes Brain Behav 10: 17–27 doi:10.1111/j.1601-183X.2010.00610.x.
[2]  Holy TE, Guo Z (2005) Ultrasonic songs of male mice. PLoS Biol 3: e386 doi:10.1371/journal.pbio.0030386.
[3]  Kroodsma DE, Konishi M (1991) A suboscine bird (eastern phoebe, Sayornis phoebe) develops normal song without auditory feedback. Anim Behav 42: 477–487.
[4]  Arriaga G, Jarvis ED (2012) Mouse vocal communication system: are ultrasounds learned or innate? Brain Lang Accepted
[5]  Janik VM, Slater PJB (1997) Vocal learning in mammals. Adv Stud Behav 26: 59–99.
[6]  Jarvis ED (2004) Learned birdsong and the neurobiology of human language. Ann NY Acad Sci 1016: 749–777.
[7]  Fitch WT, Huber L, Bugnyar T (2010) Social cognition and the evolution of language: constructing cognitive phylogenies. Neuron 65: 795–814 doi:10.1016/j.neuron.2010.03.011.
[8]  Doupe AJ, Kuhl PK (1999) Birdsong and human speech: common themes and mechanisms. Annu Rev Neurosci 22: 567–631 doi:10.1146/annurev.neuro.22.1.567.
[9]  Jürgens U (2002) Neural pathways underlying vocal control. Neurosci Biobehav R 26: 235–258.
[10]  Egnor SER, Hauser MD (2004) A paradox in the evolution of primate vocal learning. Trends Neurosci 27: 649–654 doi:10.1016/j.tins.2004.08.009.
[11]  Enard W, Gehre S, Hammerschmidt K, H?lter SM, Blass T, et al. (2009) A humanized version of Foxp2 affects cortico-basal ganglia circuits in mice. Cell 137: 961–971 doi:10.1016/j.cell.2009.03.041.
[12]  Jarvis ED, Ribeiro S, Da Silva ML, Ventura D, Vielliard J, et al. (2000) Behaviourally driven gene expression reveals song nuclei in hummingbird brain. Nature 406: 628–632 doi:10.1038/35020570.
[13]  Wild JM (1997) Neural pathways for the control of birdsong production. J Neurobiol 33: 653–670.
[14]  Simonyan K, Horwitz B (2011) Laryngeal motor cortex and control of speech in humans. Neuroscientist 17: 197–208 doi:10.1177/1073858410386727.
[15]  Jarvis ED, Nottebohm F (1997) Motor-driven gene expression. P Natl Acad Sci USA 94: 4097–4102.
[16]  Jarvis ED, Güntürkün O, Bruce L, Csillag A, Karten H, et al. (2005) Avian brains and a new understanding of vertebrate brain evolution. Nat Rev Neurosci 6: 151–159 doi:10.1038/nrn1606.
[17]  Lemon RN (2008) Descending pathways in motor control. Annu Rev Neurosci 31: 195–218 doi:10.1146/annurev.neuro.31.060407.1255?47.
[18]  Kuypers H (1958) Corticobular connexions to the pons and lower brain-stem in man: an anatomical study. Brain 81: 364–388.
[19]  Iwatsubo T, Kuzuhara S, Kanemitsu A, Shimada H, Toyokura Y (1990) Corticofugal projections to the motor nuclei of the brainstem and spinal cord in humans. Neurology 40: 309–312.
[20]  Kuypers H (1958) Some projections from the peri-central cortex to the pons and lower brain stem in monkey and chimpanzee. J Comp Neurol 110: 221–255.
[21]  Arends JJA, Dubbeldam JL (1982) Exteroceptive and proprioceptive afferents of the trigeminal and facial motor nuclei in the mallard (Anas platyrhynchos L.). J Comp Neurol 209: 313–329.
[22]  Simonyan K, Jürgens U (2003) Efferent subcortical projections of the laryngeal motorcortex in the rhesus monkey. Brain Res 974: 43–59.
[23]  Feenders G, Liedvogel M, Rivas M, Zapka M, Horita H, et al. (2008) Molecular mapping of movement-associated areas in the avian brain: a motor theory for vocal learning origin. PLoS ONE 3: e1768 doi:10.1371/journal.pone.0001768.
[24]  Deacon TW (2007) The Evolution of Language Systems in the Human Brain. In: Kaas J, editor. Evolution of Nervous Systems. Amsterdam: Elsevier, Vol. 4. pp. 529–547. Available:http://www.teleodynamics.com/wp-content/?PDF/Evolutionlanguagesystems.pdf.
[25]  Okanoya K (2004) Functional and structural pre-adaptations to language: insight from comparative cognitive science into the study of language origin. JPN Psychol Res 46: 207–215.
[26]  Kirzinger A, Jürgens U (1982) Cortical lesion effects and vocalization in the squirrel monkey. Brain Res 233: 299–315.
[27]  Card JP, Enquist LW (2001) Transneuronal circuit analysis with pseudorabies viruses. Curr Protoc Neurosci Chapter 1: Unit1.5 doi:10.1002/0471142301.ns0105s09.
[28]  Aston-Jones G, Card JP (2000) Use of pseudorabies virus to delineate multisynaptic circuits in brain: opportunities and limitations. J Neurosci Methods 103: 51–61.
[29]  Riede T (2011) Subglottal pressure, tracheal airflow, and intrinsic laryngeal muscle activity during rat ultrasound vocalization. J Neurophysiol 106: 2580–2592 doi:10.1152/jn.00478.2011.
[30]  van Daele DJ, Cassell MD (2009) Multiple forebrain systems converge on motor neurons innervating the thyroarytenoid muscle. Neuroscience 162: 501–524 doi:10.1016/j.neuroscience.2009.05.005.
[31]  Bareyre FM, Kerschensteiner M, Raineteau O, Mettenleiter TC, Weinmann O, et al. (2004) The injured spinal cord spontaneously forms a new intraspinal circuit in adult rats. Nat Neurosci 7: 269–277 doi:10.1038/nn1195.
[32]  Simpson HB, Vicario DS (1990) Brain pathways for learned and unlearned vocalizations differ in zebra finches. J Neurosci 10: 1541–1556.
[33]  Aitken PG (1981) Cortical control of conditioned and spontaneous vocal behavior in rhesus monkeys. Brain Lang 13: 171–184.
[34]  Sutton D, Larson C, Lindeman RC (1974) Neocortical and limbic lesion effects on primate phonation. Brain Res 71: 61–75.
[35]  Nottebohm F, Nottebohm ME (1971) Vocalizations and breeding behaviour of surgically deafened ring doves (Streptopelia risoria). Anim Behav 19: 313–327.
[36]  Konishi M (1963) The role of auditory feedback in the vocal behavior of the domestic fowl. Z Tierpsychol 20: 349–367.
[37]  Takahashi K, Kamiya K, Urase K, Suga M, Takizawa T, et al. (2001) Caspase-3-deficiency induces hyperplasia of supporting cells and degeneration of sensory cells resulting in the hearing loss. Brain Res 894: 359–367.
[38]  Taglialatela JP, Russell JL, Schaeffer JA, Hopkins WD (2011) Chimpanzee vocal signaling points to a multimodal origin of human language. PLoS ONE 6: e18852 doi:10.1371/journal.pone.0018852.
[39]  Sim?es CS, Vianney PVR, de Moura MM, Freire MAM, Mello LE, et al. (2010) Activation of frontal neocortical areas by vocal production in marmosets. Front Integr Neurosci 4 doi:10.3389/fnint.2010.00123.
[40]  Miller CT, DiMauro A, Pistorio A, Hendry S, Wang X (2010) Vocalization induced cFos expression in marmoset cortex. Front Integr Neurosci 4: 1–15.
[41]  Coudé G, Ferrari PF, Rodà F, Maranesi M, Borelli E, et al. (2011) Neurons controlling voluntary vocalization in the macaque ventral premotor cortex. PLoS ONE 6: e26822 doi:10.1371/journal.pone.0026822.
[42]  Grimsley JMS, Monaghan JJM, Wenstrup JJ (2011) Development of social vocalizations in mice. PLoS ONE 6: e17460 doi:10.1371/journal.pone.0017460.
[43]  Janik VM, Slater PJB (2000) The different roles of social learning in vocal communication. Anim Behav 60: 1–11.
[44]  Heaton JT, Dooling RJ, Farabaugh SM (1999) Effects of deafening on the calls and warble song of adult budgerigars (Melopsittacus undulatus). J Acoust Soc Am 105: 2010–2019.
[45]  Brainard MS, Doupe AJ (2000) Interruption of a basal ganglia-forebrain circuit prevents plasticity of learned vocalizations. Nature 404: 762–766 doi:10.1038/35008083.
[46]  Shipley C, Buchwald JS, Carterette EC (1988) The role of auditory feedback in the vocalizations of cats. Exp Brain Res 69: 431–438.
[47]  Hage SR, Jürgens U, Ehret G (2006) Audio-vocal interaction in the pontine brainstem during self-initiated vocalization in the squirrel monkey. Eur J Neurosci 23: 3297–3308 doi:10.1111/j.1460-9568.2006.04835.x.
[48]  Olveczky BP, Andalman AS, Fee MS (2005) Vocal experimentation in the juvenile songbird requires a basal ganglia circuit. PLoS Biol 3: e153 doi:10.1371/journal.pbio.0030153.
[49]  Hammerschmidt K, Reisinger E, Westekemper K, Ehrenreich L, Strenzke N, et al. (2012) Mice do not require auditory input for the normal development of their ultrasonic vocalizations. BMC Neuroscience 13: 40 doi:10.1186/1471-2202-13-40.
[50]  Rübsamen R, Sch?fer M (1990) Audiovocal interactions during development? Vocalisation in deafened young horseshoe bats vs. audition in vocalisation-impaired bats. J Comp Physiol A 167: 771–784.
[51]  Snowdon CT, Elowson AM (1999) Pygmy marmosets modify call structure when paired. Ethology 105: 893–908.
[52]  Willott JF (2000) Animal Models of Presbycusis and the Aging Auditory System. In: Hof PR, Mobbs CV, editors. Functional Neurobiology of Aging. San Diego: Academic Press. pp. 605–617.
[53]  West MJ, King AP (1988) Female visual displays affect the development of male song in the cowbird. Nature 334: 244–246 doi:10.1038/334244a0.
[54]  Kikusui T, Nakanishi K, Nakagawa R, Nagasawa M, Mogi K, et al. (2011) Cross fostering experiments suggest that mice songs are innate. PLoS ONE 6: e17721 doi:10.1371/journal.pone.0017721.
[55]  Briefer E, McElligott A (2012) Social effects on vocal ontogeny in an ungulate, the goat, Capra hircus. Anim Behav 83: 991–1000.
[56]  Scattoni ML, Crawley JN, Ricceri L (2009) Ultrasonic vocalizations: a tool for behavioural phenotyping of mouse models of neurodevelopmental disorders. Neurosci Biobehav R 33: 508–515 doi:10.1016/j.neubiorev.2008.08.003.
[57]  Chen C-C, Wada K, Jarvis ED (2012) Radioactive in situ hybridization for detecting diverse gene expression patterns in tissue. J Vis Exp doi:10.3791/3764.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133