[1] | Fischer J, Hammerschmidt K (2010) Ultrasonic vocalizations in mouse models for speech and socio-cognitive disorders: insights into the evolution of vocal communication. Genes Brain Behav 10: 17–27 doi:10.1111/j.1601-183X.2010.00610.x.
|
[2] | Holy TE, Guo Z (2005) Ultrasonic songs of male mice. PLoS Biol 3: e386 doi:10.1371/journal.pbio.0030386.
|
[3] | Kroodsma DE, Konishi M (1991) A suboscine bird (eastern phoebe, Sayornis phoebe) develops normal song without auditory feedback. Anim Behav 42: 477–487.
|
[4] | Arriaga G, Jarvis ED (2012) Mouse vocal communication system: are ultrasounds learned or innate? Brain Lang Accepted
|
[5] | Janik VM, Slater PJB (1997) Vocal learning in mammals. Adv Stud Behav 26: 59–99.
|
[6] | Jarvis ED (2004) Learned birdsong and the neurobiology of human language. Ann NY Acad Sci 1016: 749–777.
|
[7] | Fitch WT, Huber L, Bugnyar T (2010) Social cognition and the evolution of language: constructing cognitive phylogenies. Neuron 65: 795–814 doi:10.1016/j.neuron.2010.03.011.
|
[8] | Doupe AJ, Kuhl PK (1999) Birdsong and human speech: common themes and mechanisms. Annu Rev Neurosci 22: 567–631 doi:10.1146/annurev.neuro.22.1.567.
|
[9] | Jürgens U (2002) Neural pathways underlying vocal control. Neurosci Biobehav R 26: 235–258.
|
[10] | Egnor SER, Hauser MD (2004) A paradox in the evolution of primate vocal learning. Trends Neurosci 27: 649–654 doi:10.1016/j.tins.2004.08.009.
|
[11] | Enard W, Gehre S, Hammerschmidt K, H?lter SM, Blass T, et al. (2009) A humanized version of Foxp2 affects cortico-basal ganglia circuits in mice. Cell 137: 961–971 doi:10.1016/j.cell.2009.03.041.
|
[12] | Jarvis ED, Ribeiro S, Da Silva ML, Ventura D, Vielliard J, et al. (2000) Behaviourally driven gene expression reveals song nuclei in hummingbird brain. Nature 406: 628–632 doi:10.1038/35020570.
|
[13] | Wild JM (1997) Neural pathways for the control of birdsong production. J Neurobiol 33: 653–670.
|
[14] | Simonyan K, Horwitz B (2011) Laryngeal motor cortex and control of speech in humans. Neuroscientist 17: 197–208 doi:10.1177/1073858410386727.
|
[15] | Jarvis ED, Nottebohm F (1997) Motor-driven gene expression. P Natl Acad Sci USA 94: 4097–4102.
|
[16] | Jarvis ED, Güntürkün O, Bruce L, Csillag A, Karten H, et al. (2005) Avian brains and a new understanding of vertebrate brain evolution. Nat Rev Neurosci 6: 151–159 doi:10.1038/nrn1606.
|
[17] | Lemon RN (2008) Descending pathways in motor control. Annu Rev Neurosci 31: 195–218 doi:10.1146/annurev.neuro.31.060407.1255?47.
|
[18] | Kuypers H (1958) Corticobular connexions to the pons and lower brain-stem in man: an anatomical study. Brain 81: 364–388.
|
[19] | Iwatsubo T, Kuzuhara S, Kanemitsu A, Shimada H, Toyokura Y (1990) Corticofugal projections to the motor nuclei of the brainstem and spinal cord in humans. Neurology 40: 309–312.
|
[20] | Kuypers H (1958) Some projections from the peri-central cortex to the pons and lower brain stem in monkey and chimpanzee. J Comp Neurol 110: 221–255.
|
[21] | Arends JJA, Dubbeldam JL (1982) Exteroceptive and proprioceptive afferents of the trigeminal and facial motor nuclei in the mallard (Anas platyrhynchos L.). J Comp Neurol 209: 313–329.
|
[22] | Simonyan K, Jürgens U (2003) Efferent subcortical projections of the laryngeal motorcortex in the rhesus monkey. Brain Res 974: 43–59.
|
[23] | Feenders G, Liedvogel M, Rivas M, Zapka M, Horita H, et al. (2008) Molecular mapping of movement-associated areas in the avian brain: a motor theory for vocal learning origin. PLoS ONE 3: e1768 doi:10.1371/journal.pone.0001768.
|
[24] | Deacon TW (2007) The Evolution of Language Systems in the Human Brain. In: Kaas J, editor. Evolution of Nervous Systems. Amsterdam: Elsevier, Vol. 4. pp. 529–547. Available:http://www.teleodynamics.com/wp-content/?PDF/Evolutionlanguagesystems.pdf.
|
[25] | Okanoya K (2004) Functional and structural pre-adaptations to language: insight from comparative cognitive science into the study of language origin. JPN Psychol Res 46: 207–215.
|
[26] | Kirzinger A, Jürgens U (1982) Cortical lesion effects and vocalization in the squirrel monkey. Brain Res 233: 299–315.
|
[27] | Card JP, Enquist LW (2001) Transneuronal circuit analysis with pseudorabies viruses. Curr Protoc Neurosci Chapter 1: Unit1.5 doi:10.1002/0471142301.ns0105s09.
|
[28] | Aston-Jones G, Card JP (2000) Use of pseudorabies virus to delineate multisynaptic circuits in brain: opportunities and limitations. J Neurosci Methods 103: 51–61.
|
[29] | Riede T (2011) Subglottal pressure, tracheal airflow, and intrinsic laryngeal muscle activity during rat ultrasound vocalization. J Neurophysiol 106: 2580–2592 doi:10.1152/jn.00478.2011.
|
[30] | van Daele DJ, Cassell MD (2009) Multiple forebrain systems converge on motor neurons innervating the thyroarytenoid muscle. Neuroscience 162: 501–524 doi:10.1016/j.neuroscience.2009.05.005.
|
[31] | Bareyre FM, Kerschensteiner M, Raineteau O, Mettenleiter TC, Weinmann O, et al. (2004) The injured spinal cord spontaneously forms a new intraspinal circuit in adult rats. Nat Neurosci 7: 269–277 doi:10.1038/nn1195.
|
[32] | Simpson HB, Vicario DS (1990) Brain pathways for learned and unlearned vocalizations differ in zebra finches. J Neurosci 10: 1541–1556.
|
[33] | Aitken PG (1981) Cortical control of conditioned and spontaneous vocal behavior in rhesus monkeys. Brain Lang 13: 171–184.
|
[34] | Sutton D, Larson C, Lindeman RC (1974) Neocortical and limbic lesion effects on primate phonation. Brain Res 71: 61–75.
|
[35] | Nottebohm F, Nottebohm ME (1971) Vocalizations and breeding behaviour of surgically deafened ring doves (Streptopelia risoria). Anim Behav 19: 313–327.
|
[36] | Konishi M (1963) The role of auditory feedback in the vocal behavior of the domestic fowl. Z Tierpsychol 20: 349–367.
|
[37] | Takahashi K, Kamiya K, Urase K, Suga M, Takizawa T, et al. (2001) Caspase-3-deficiency induces hyperplasia of supporting cells and degeneration of sensory cells resulting in the hearing loss. Brain Res 894: 359–367.
|
[38] | Taglialatela JP, Russell JL, Schaeffer JA, Hopkins WD (2011) Chimpanzee vocal signaling points to a multimodal origin of human language. PLoS ONE 6: e18852 doi:10.1371/journal.pone.0018852.
|
[39] | Sim?es CS, Vianney PVR, de Moura MM, Freire MAM, Mello LE, et al. (2010) Activation of frontal neocortical areas by vocal production in marmosets. Front Integr Neurosci 4 doi:10.3389/fnint.2010.00123.
|
[40] | Miller CT, DiMauro A, Pistorio A, Hendry S, Wang X (2010) Vocalization induced cFos expression in marmoset cortex. Front Integr Neurosci 4: 1–15.
|
[41] | Coudé G, Ferrari PF, Rodà F, Maranesi M, Borelli E, et al. (2011) Neurons controlling voluntary vocalization in the macaque ventral premotor cortex. PLoS ONE 6: e26822 doi:10.1371/journal.pone.0026822.
|
[42] | Grimsley JMS, Monaghan JJM, Wenstrup JJ (2011) Development of social vocalizations in mice. PLoS ONE 6: e17460 doi:10.1371/journal.pone.0017460.
|
[43] | Janik VM, Slater PJB (2000) The different roles of social learning in vocal communication. Anim Behav 60: 1–11.
|
[44] | Heaton JT, Dooling RJ, Farabaugh SM (1999) Effects of deafening on the calls and warble song of adult budgerigars (Melopsittacus undulatus). J Acoust Soc Am 105: 2010–2019.
|
[45] | Brainard MS, Doupe AJ (2000) Interruption of a basal ganglia-forebrain circuit prevents plasticity of learned vocalizations. Nature 404: 762–766 doi:10.1038/35008083.
|
[46] | Shipley C, Buchwald JS, Carterette EC (1988) The role of auditory feedback in the vocalizations of cats. Exp Brain Res 69: 431–438.
|
[47] | Hage SR, Jürgens U, Ehret G (2006) Audio-vocal interaction in the pontine brainstem during self-initiated vocalization in the squirrel monkey. Eur J Neurosci 23: 3297–3308 doi:10.1111/j.1460-9568.2006.04835.x.
|
[48] | Olveczky BP, Andalman AS, Fee MS (2005) Vocal experimentation in the juvenile songbird requires a basal ganglia circuit. PLoS Biol 3: e153 doi:10.1371/journal.pbio.0030153.
|
[49] | Hammerschmidt K, Reisinger E, Westekemper K, Ehrenreich L, Strenzke N, et al. (2012) Mice do not require auditory input for the normal development of their ultrasonic vocalizations. BMC Neuroscience 13: 40 doi:10.1186/1471-2202-13-40.
|
[50] | Rübsamen R, Sch?fer M (1990) Audiovocal interactions during development? Vocalisation in deafened young horseshoe bats vs. audition in vocalisation-impaired bats. J Comp Physiol A 167: 771–784.
|
[51] | Snowdon CT, Elowson AM (1999) Pygmy marmosets modify call structure when paired. Ethology 105: 893–908.
|
[52] | Willott JF (2000) Animal Models of Presbycusis and the Aging Auditory System. In: Hof PR, Mobbs CV, editors. Functional Neurobiology of Aging. San Diego: Academic Press. pp. 605–617.
|
[53] | West MJ, King AP (1988) Female visual displays affect the development of male song in the cowbird. Nature 334: 244–246 doi:10.1038/334244a0.
|
[54] | Kikusui T, Nakanishi K, Nakagawa R, Nagasawa M, Mogi K, et al. (2011) Cross fostering experiments suggest that mice songs are innate. PLoS ONE 6: e17721 doi:10.1371/journal.pone.0017721.
|
[55] | Briefer E, McElligott A (2012) Social effects on vocal ontogeny in an ungulate, the goat, Capra hircus. Anim Behav 83: 991–1000.
|
[56] | Scattoni ML, Crawley JN, Ricceri L (2009) Ultrasonic vocalizations: a tool for behavioural phenotyping of mouse models of neurodevelopmental disorders. Neurosci Biobehav R 33: 508–515 doi:10.1016/j.neubiorev.2008.08.003.
|
[57] | Chen C-C, Wada K, Jarvis ED (2012) Radioactive in situ hybridization for detecting diverse gene expression patterns in tissue. J Vis Exp doi:10.3791/3764.
|