全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
PLOS ONE  2012 

The Role of Decision Support System (DSS) in Prevention of Cardiovascular Disease: A Systematic Review and Meta-Analysis

DOI: 10.1371/journal.pone.0047064

Full-Text   Cite this paper   Add to My Lib

Abstract:

Background The potential role of DSS in CVD prevention remains unclear as only a few studies report on patient outcomes for cardiovascular disease. Methods and Results A systematic review and meta-analysis of randomised controlled trials and observational studies was done using Medline, Embase, Cochrane Library, PubMed, Amed, CINAHL, Web of Science, Scopus databases; reference lists of relevant studies to 30 July 2011; and email contact with experts. The primary outcome was prevention of cardiovascular disorders (myocardial infarction, stroke, coronary heart disease, peripheral vascular disorders and heart failure) and management of hypertension owing to decision support systems, clinical decision supports systems, computerized decision support systems, clinical decision making tools and medical decision making (interventions). From 4116 references ten studies met our inclusion criteria (including 16,312 participants). Five papers reported outcomes on blood pressure management, one paper on heart failure, two papers each on stroke, and coronary heart disease. The pooled estimate for CDSS versus control group differences in SBP (mm of Hg) was - 0.99 (95% CI ?3.02 to 1.04 mm of Hg; I2 = 0; p = 0.851). Conclusions DSS show an insignificant benefit in the management and control of hypertension (insignificant reduction of SBP). The paucity of well-designed studies on patient related outcomes is a major hindrance that restricts interpretation for evaluating the role of DSS in secondary prevention. Future studies on DSS should (1) evaluate both physician performance and patient outcome measures (2) integrate into the routine clinical workflow with a provision for decision support at the point of care.

References

[1]  Brady AJ, Oliver MA, Pittard JB (2001) Secondary prevention in 24, 431 patients with coronary heart disease: survey in primary care. BMJ 322: 1463.
[2]  Shea S, DuMouchel W, Bahamonde L (1996) A meta-analysis of 16 randomized controlled trials to evaluate computer-based clinical reminder systems for preventive care in the ambulatory setting. Journal of the American Medical Informatics Association 3: 399–409.
[3]  Shea AM, DePuy V, Allen JM, Weinfurt KP (2007) Use and perceptions of clinical practice guidelines by internal medicine physicians. Am J Med Qual 22: 170–176.
[4]  Hetlevik I, Holmen J, Kruger O, Holen A (1997) Fifteen years with clinical guidelines in the treatment of hypertension–still discrepancies between intentions and practice. Scand J Prim Health Care 15: 134–140.
[5]  Berner ES (2007) Clinical Decision Support Systems. New York: Springer.
[6]  Kensaku Kawamoto CAH, E Andrew Balas, David F Lobach (2005) Improving clinical practice using clinical decision support systems: a systematic review of trials to identify features critical to success. BMJ. doi:10.1136/bmj.38398.500764.8F
[7]  Balas EA, Austin SM, Mitchell JA, Ewigman BG, Bopp KD, et al. (1996) The clinical value of computerized information services. A review of 98 randomized clinical trials. Arch Fam Med 5: 271–278.
[8]  Garg AX, Adhikari NK, McDonald H, Rosas-Arellano MP, Devereaux PJ, et al. (2005) Effects of computerized clinical decision support systems on practitioner performance and patient outcomes: a systematic review. JAMA 293: 1223–1238.
[9]  Hunt DL, Haynes RB, Hanna SE, Smith K (1998) Effects of computer-based clinical decision support systems on physician performance and patient outcomes: a systematic review. JAMA 280: 1339–1346.
[10]  Hunt JS, Siemienczuk J, Gillanders W, LeBlanc BH, Rozenfeld Y, et al. (2009) The impact of a physician-directed health information technology system on diabetes outcomes in primary care: a pre- and post-implementation study. Inform Prim Care 17: 165–174.
[11]  Johnston ME, Langton KB, Haynes RB, Mathieu A (1994) Effects of computer-based clinical decision support systems on clinician performance and patient outcome. A critical appraisal of research. Ann Intern Med 120: 135–142.
[12]  Van Wyk JT, Van Wijk MA, Moorman PW, Mosseveld M, Van Der Lei J (2003) Cholgate - a randomized controlled trial comparing the effect of automated and on-demand decision support on the management of cardiovascular disease factors in primary care. AMIA Annu Symp Proc: 1040.
[13]  Sintchenko V, Coiera E, Iredell JR, Gilbert GL (2004) Comparative impact of guidelines, clinical data, and decision support on prescribing decisions: an interactive web experiment with simulated cases. J Am Med Inform Assoc 11: 71–77.
[14]  Bosworth HB, Olsen MK, Dudley T, Orr M, Goldstein MK, et al. (2009) Patient education and provider decision support to control blood pressure in primary care: A cluster randomized trial. American Heart Journal 157: 450–456.
[15]  Roumie CL (2006) Improving Blood Pressure Control through Provider Education, Provider Alerts, and Patient Education. Ann Intern Med 145: 165–175.
[16]  Hicks LS, Sequist TD, Ayanian JZ, Shaykevich S, Fairchild DG, et al. (2008) Impact of computerized decision support on blood pressure management and control: A randomized controlled trial. Journal of General Internal Medicine 23: 429–441.
[17]  Brown MD, Reeves MJ, Glynn T, Majid A, Kothari RU (2007) Implementation of an emergency department based transient ischemic attack clinical pathway: a pilot study in knowledge translation. Acad Emerg Med 14: 1114–1119.
[18]  Levin RI, Koenig KL, Corder MP, Bhalla NP, Rosenzweig BP, et al. (2002) Risk stratification and prevention in chronic coronary artery disease: Use of a novel prognostic and computer-based clinical decision support system in a large primary managed-care group practice. Disease Management 5: 197–213.
[19]  Montgomery AA, Fahey T, Peters TJ, MacIntosh C, Sharp DJ (2000) Evaluation of computer based clinical decision support system and risk chart for management of hypertension in primary care: Randomised controlled trial. British Medical Journal 320: 686–690.
[20]  Group PiISMPS (2003) Cluster-randomized, controlled trial of computer-based decision support for selecting long-term anti-thrombotic therapy after acute ischaemic stroke. Q J Med 96: 143–153.
[21]  Gilutz H, Novack L, Shvartzman P, Zelingher J, Bonneh DY, et al. (2009) Computerized community cholesterol control (4C): meeting the challenge of secondary prevention. Isr Med Assoc J 11: 23–29.
[22]  Mudge A, Denaro C, Scott I, Bennett C, Hickey A, et al. (2010) The Paradox of Readmission: Effect of a Quality Improvement Program in Hospitalized Patients With Heart Failure. Journal of Hospital Medicine 5: 148–153.
[23]  Rinfret S (2009) The impact of a multidsicplinary information technology supported program on blood pressure control in primary care. Circ Cardiovasc Qual Outcomes 2: 170–177.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133